Skip to main content
Log in

Saccular intracranial aneurysm: pathology and mechanisms

  • Review Article
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Saccular intracranial aneurysms (sIA) are pouch-like pathological dilatations of intracranial arteries that develop when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends. Some sIAs remain stable over time, but in others mural cells die, the matrix degenerates, and eventually the wall ruptures, causing life-threatening hemorrhage. The wall of unruptured sIAs is characterized by myointimal hyperplasia and organizing thrombus, whereas that of ruptured sIAs is characterized by a decellularized, degenerated matrix and a poorly organized luminal thrombus. Cell-mediated and humoral inflammatory reaction is seen in both, but inflammation is clearly associated with degenerated and ruptured walls. Inflammation, however, seems to be a reaction to the ongoing degenerative processes, rather than the cause. Current data suggest that the loss of mural cells and wall degeneration are related to impaired endothelial function and high oxidative stress, caused in part by luminal thrombosis. The aberrant flow conditions caused by sIA geometry are the likely cause of the endothelial dysfunction, which results in accumulation of cytotoxic and pro-inflammatory substances into the sIA wall, as well as thrombus formation. This may start the processes that eventually can lead to the decellularized and degenerated sIA wall that is prone to rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alikhani M, Alikhani Z, Raptis M et al (2004) TNF-a in vivo stimulates apoptosis in fibroblasts through caspase-8 activation and modulates expression of pro-apoptotic genes. J Cell Physiol 201:341–348

    Article  PubMed  CAS  Google Scholar 

  2. Aoki T, Nishimura M (2011) The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J Biomed Biotechnol 2011:535921

    Article  PubMed  Google Scholar 

  3. Bavinzski G, Talazoglu V, Killer M et al (1999) Gross and microscopic histopathological findings in aneurysms of the human brain treated with Guglielmi detachable coils. J Neurosurg 9:284–293

    Google Scholar 

  4. Beck J, Rohde S, el Beltagy M et al (2003) Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography. Acta Neurochir (Wien) 145:861–865

    Article  CAS  Google Scholar 

  5. Bor AS, Rinkel GJ, Adami J et al (2008) Risk of subarachnoid haemorrhage according to number of affected relatives: a population based case-control study. Brain 131:2662–2665

    Article  PubMed  CAS  Google Scholar 

  6. Boyle J, Weissberg P, Bennett M (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 23:1553–1558

    Article  PubMed  CAS  Google Scholar 

  7. Bruno G, Todor R, Lewis I et al (1998) Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 89:431–440

    Article  PubMed  CAS  Google Scholar 

  8. Chapman AB, Rubinstein D, Hughes R et al (1992) Intracranial aneurysms in autosomal dominant polycystic kidney disease. N Engl J Med 327:916–920

    Article  PubMed  CAS  Google Scholar 

  9. Chien S (2008) Effects of disturbed flow on endothelial cells. Ann Biomed Eng 36:554–562

    Article  PubMed  Google Scholar 

  10. Chyatte D, Bruno G, Desai S et al (1999) Inflammation and intracranial aneurysms. Neurosurgery 45:1137–1146

    Article  PubMed  CAS  Google Scholar 

  11. Cloft HJ, Kallmes DF, Kallmes MH et al (1998) Prevalence of cerebral aneurysms in patients with fibromuscular dysplasia: a reassessment. J Neurosurg 88:436–440

    Article  PubMed  CAS  Google Scholar 

  12. Conway JE, Hutchins GM, Tamargo RJ (1999) Marfan syndrome is not associated with intracranial aneurysms. Stroke 30:1632–1636

    Article  PubMed  CAS  Google Scholar 

  13. Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160

    Article  PubMed  CAS  Google Scholar 

  14. Ferns SP, Sprengers ME, van Rooij WJ et al (2009) Coiling of intracranial aneurysms: a systematic review on initial occlusion and reopening and retreatment rates. Stroke 40:e523–e529

    Article  PubMed  Google Scholar 

  15. Fontaine V, Jacob MP, Houard X et al (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710

    Article  PubMed  CAS  Google Scholar 

  16. Frösen J, Piippo A, Paetau A et al (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293

    Article  PubMed  Google Scholar 

  17. Frösen J, Piippo A, Paetau A et al (2006) Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery 58:534–541

    PubMed  Google Scholar 

  18. Frösen J, Marjamaa J, Myllärniemi M et al (2006) Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model. Neurosurgery 58:936–944

    Article  PubMed  Google Scholar 

  19. Frösen J, Litmanen S, Tulamo R et al (2006) Matrix metalloproteinase-2 and -9 expression in the wall of saccular cerebral artery aneurysm. Neurosurgery 58:413–413 (Conference abstract)

    Google Scholar 

  20. Frösen J (2006) The pathobiology of saccular cerebral artery aneurysm rupture and repair. A clinicopathological and experimental approach. Helsinki University Press. http://ethesis.helsinki.fi/julkaisut/laa/kliin/vk/frosen/thepatho.pdf

  21. Gieteling EW, Rinkel GJ (2003) Characteristics of intracranial aneurysms and subarachnoid haemorrhage in patients with polycystic kidney disease. J Neurol 250:418–423

    Article  PubMed  Google Scholar 

  22. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  23. Guo F, Li Z, Song L, Han T (2007) Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm. J Clin Neurosci 14:550–555

    Article  PubMed  CAS  Google Scholar 

  24. Hashimoto N, Handa H, Hazama F (1978) Experimentally induced cerebral aneurysms in rats. Surg Neurol 10:3–8

    PubMed  CAS  Google Scholar 

  25. Hashimoto N, Kim C, Kikuchi H (1987) Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 67:903–905

    Article  PubMed  CAS  Google Scholar 

  26. Hassler O (1961) Morphological studies on the large cerebral arteries, with reference to the aetiology of subarachnoid haemorrhage. Acta Psychiatr Scand Suppl 154:1–145

    PubMed  CAS  Google Scholar 

  27. Heiskanen O (1989) Ruptured intracranial arterial aneurysms of children and adolescents. Surgical and total management results. Childs Nerv Syst 5:66–70

    Article  PubMed  CAS  Google Scholar 

  28. Heiskanen O, Vilkki J (1981) Intracranial arterial aneurysms in children and adolescents. Acta Neurochir (Wien) 59:55–63

    Article  CAS  Google Scholar 

  29. Hessler JR, Morel DW, Lewis LJ et al (1983) Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 3:215–222

    Article  PubMed  CAS  Google Scholar 

  30. Houard X, Ollivier V, Louedec L (2009) Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J 23:1376–1383

    Article  PubMed  CAS  Google Scholar 

  31. Huttunen T, von und zu Fraunberg M, Frösen J et al (2010) Saccular intracranial aneurysm disease: distribution of site, size, and age suggests different etiologies for aneurysm formation and rupture in 316 familial and 1454 sporadic eastern Finnish patients. Neurosurgery 66:631–638

    Article  PubMed  Google Scholar 

  32. Inci S, Spetzler RF (2000) Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg Neurol 53:530–540

    Article  PubMed  CAS  Google Scholar 

  33. Ingall T, Asplund K, Mahonen M et al (2000) A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31:1054–1061

    Article  PubMed  CAS  Google Scholar 

  34. Isaksen J, Egge A, Waterloo K et al (2002) Risk factors for aneurysmal subarachnoid haemorrhage: the Tromsø study. J Neurol Neurosurg Psychiatry 73:185–187

    Article  PubMed  CAS  Google Scholar 

  35. Jamous MA, Nagahiro S, Kitazato KT (2007) Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg 107:405–411

    Article  PubMed  Google Scholar 

  36. Jayaraman T, Berenstein V, Li X et al (2005) Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 57:558–564

    Article  PubMed  Google Scholar 

  37. Juvela S, Poussa K, Porras M (2001) Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke 32:485–491

    Article  PubMed  CAS  Google Scholar 

  38. Juvela S, Poussa K, Porras M (2000) Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J Neurosurg 93:379–387

    Article  PubMed  CAS  Google Scholar 

  39. Kataoka K, Taneda M, Asai T et al (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401

    Article  PubMed  CAS  Google Scholar 

  40. Kim C, Cervos-Navarro J, Kikuchi H et al (1993) Degenerative changes in the internal elastic lamina relating to the development of saccular cerebral aneurysms in rats. Acta Neurochir (Wien) 121:76–81

    Article  CAS  Google Scholar 

  41. Kim SC, Singh M, Huang J et al (1997) Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41:642–666

    PubMed  CAS  Google Scholar 

  42. Klos A, Tenner AJ, Johswich KO et al (2009) The role of the anaphylatoxins in health and disease. Mol Immunol 46:2753–2766

    Article  PubMed  CAS  Google Scholar 

  43. Kondo S, Hashimoto N, Kikuchi H et al (1998) Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke 29:181–188

    Article  PubMed  CAS  Google Scholar 

  44. Korja M, Silventoinen K, McCarron P et al (2010) Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic Twin Study. Stroke 41:2458–2462

    Article  PubMed  Google Scholar 

  45. Kosierkiewicz TA, Factor SM, Dickson DW et al (1994) Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol 53:399–406

    Article  PubMed  CAS  Google Scholar 

  46. Krischek B, Kasuya H, Tajima A et al (2008) Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience 154:1398–1407

    Article  PubMed  CAS  Google Scholar 

  47. Kurki MI, Häkkinen SK, Frösen J et al (2011) Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging regulative role of Toll like receptor signaling and NF-KB, HIF1A and ETS transcription factors. Neurosurgery 68:1667–1676

    Article  PubMed  Google Scholar 

  48. Laaksamo E, Tulamo R, Baumann M et al (2008) Involvement of mitogen-activated protein kinase signaling in growth and rupture of human intracranial aneurysms. Stroke 39:886–892

    Article  PubMed  CAS  Google Scholar 

  49. Marchese E, Vignati A, Albanese A et al (2010) Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 24:185–195

    PubMed  CAS  Google Scholar 

  50. Michel JB, Thaunat O, Houard X et al (2007) Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 27:1259–1268

    Article  PubMed  CAS  Google Scholar 

  51. Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354

    Article  PubMed  CAS  Google Scholar 

  52. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    Article  PubMed  CAS  Google Scholar 

  53. Morimoto M, Miyamoto S, Mizoguchi A (2002) Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 33:1911–1915

    Article  PubMed  Google Scholar 

  54. Nagakawa H, Suzuki S, Haneda M (2000) Significance of glomerular deposition of C3c and C3d in IgA nephropathy. Am J Nephrol 20:122–128

    Article  Google Scholar 

  55. Nahed BV, Bydon M, Ozturk AK (2007) Genetics of intracranial aneurysms. Neurosurgery 60:213–225

    Article  PubMed  Google Scholar 

  56. Newby AC, Zaltsman AB (2000) Molecular mechanisms in intimal hyperplasia. J Pathol 190:300–309

    Article  PubMed  CAS  Google Scholar 

  57. Nielsen MJ, Moestrup SK (2009) Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood 114:764–771

    Article  PubMed  CAS  Google Scholar 

  58. Nieuwkamp DJ, Setz LE, Algra A et al (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a metaanalysis. Lancet Neurol 8:635–642

    Article  PubMed  Google Scholar 

  59. Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33

    Article  PubMed  CAS  Google Scholar 

  60. Nyström SH (1963) Development of intracranial aneurysms as revealed by electron microscopy. J Neurosurg 20:329–337

    Article  Google Scholar 

  61. Pentimalli L, Modesti A, Vignati A et al (2004) Role of apoptosis in intracranial aneurysm rupture. J Neurosurg 101:1018–1025

    Article  PubMed  Google Scholar 

  62. Pera J, Korostynski M, Krzyszkowski T et al (2010) Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke 41:224–231

    Article  PubMed  CAS  Google Scholar 

  63. Pope FM, Nicholls AC, Narcisi P et al (1981) Some patients with cerebral aneurysms are deficient in type III collagen. Lancet 1:973–975

    Article  PubMed  CAS  Google Scholar 

  64. Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362

    Article  PubMed  Google Scholar 

  65. Rinkel GJ, Djibuti M, Algra A et al (1998) Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256

    Article  PubMed  CAS  Google Scholar 

  66. Ronkainen A, Hernesniemi J, Ryynanen M et al (1994) A ten percent prevalence of asymptomatic familial intracranial aneurysms: preliminary report on 110 magnetic resonance angiography studies in members of 21 Finnish familial intracranial aneurysm families. Neurosurgery 35:208–212

    Article  PubMed  CAS  Google Scholar 

  67. Ronkainen A, Hernesniemi J, Ryynänen M (1993) Familial Subarachnoid Hemorrhage in East Finland, 1977–1990. Neurosurgery 33:787–797

    Article  PubMed  CAS  Google Scholar 

  68. Rubinstein MK, Cohen NH (1964) Ehlers-Danlos syndrome associated with multiple intracranial aneurysms. Neurology 14:125–132

    Article  PubMed  CAS  Google Scholar 

  69. Sakaki T, Kohmura E, Kishiguchi T et al (1997) Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir (Wien) 139:469–474

    Article  CAS  Google Scholar 

  70. Sandvei MS, Romundstad PR, Müller TB et al (2009) Risk factors for aneurysmal subarachnoid hemorrhage in a prospective population study: the HUNT study in Norway. Stroke 40:1958–1962

    Article  PubMed  Google Scholar 

  71. Sawabe M (2010) Vascular aging: from molecular mechanism to clinical significance. Geriatr Gerontol Int 10(Suppl 1):S213–S220

    Article  PubMed  Google Scholar 

  72. Scanarini M, Mingrino S, Giordano R et al (1978) Histological and ultrastructural study of intracranial saccular aneurysmal wall. Acta Neurochir (Wien) 43:171–182

    Article  CAS  Google Scholar 

  73. Scanarini M, Mingrino S, Zuccarello M et al (1978) Scanning electron microscopy (s.e.m.) of biopsy specimens of ruptured intracranial saccular aneurysms. Acta Neuropathol 44:131–134

    Article  PubMed  CAS  Google Scholar 

  74. Schievink WI, Michels VV, Piepgras DG (1994) Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke 25:889–903

    Article  PubMed  CAS  Google Scholar 

  75. Schievink WI, Schaid DJ, Michels VV et al (1995) Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg 83:426–429

    Article  PubMed  CAS  Google Scholar 

  76. Shojima M, Oshima M, Takagi K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505

    Article  PubMed  Google Scholar 

  77. Shojima M, Oshima M, Takagi K et al (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938

    Article  PubMed  Google Scholar 

  78. Soehnlein O, Weber C, Lindbom L (2009) Neutrophil granule proteins tune monocytic cell function. Trens Immunol 30:538–546

    Article  CAS  Google Scholar 

  79. Stegmayr B, Eriksson M, Asplund K (2004) Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke 35:2059–2063

    Article  PubMed  Google Scholar 

  80. Stehbens WE (1963) Histopathology of cerebral aneurysms. Arch Neurol 8:272–285

    Article  PubMed  CAS  Google Scholar 

  81. Stehbens WE (1989) Etiology of intracranial berry aneurysms. J Neurosurg 70:823–831

    Article  PubMed  CAS  Google Scholar 

  82. Szikora I, Seifert P, Hanzely Z et al (2006) Histopathologic evaluation of aneurysms treated with Guglielmi detachable coils or matrix detachable microcoils. AJNR Am J Neuroradiol 27:283–288

    PubMed  CAS  Google Scholar 

  83. Tedgui A, Lever MJ (1984) Filtration through damaged and undamaged rabbit thoracic aorta. Am J Physiol 247:H784–H791

    PubMed  CAS  Google Scholar 

  84. Todor DR, Lewis I, Bruno G et al (1998) Identification of a serum gelatinase associated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2. Stroke 29:1580–1583

    Article  PubMed  CAS  Google Scholar 

  85. Tulamo R, Frösen J, Junnikkala S et al (2006) Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery 59:1069–1076

    PubMed  Google Scholar 

  86. Tulamo R, Frösen J, Junnikkala S et al (2010) Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 90:168–179

    Article  PubMed  CAS  Google Scholar 

  87. Tulamo R, Frösen J, Paetau A et al (2010) Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am J Pathol 177:3224–3232

    Article  PubMed  Google Scholar 

  88. Ueda S, Masutani H, Nakamura H et al (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  PubMed  CAS  Google Scholar 

  89. Ujiie H, Tachibana H, Hiramatsu O et al (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:119–129

    Article  PubMed  CAS  Google Scholar 

  90. Virchow VR (1847) Uber die akute Entzundung der Arterien. Virchows Arch A Pathol Anat Histopathol 1:272–378

    Google Scholar 

  91. Weir B, Amidei C, Kongable G (2003) The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg 99:447–451

    Article  PubMed  Google Scholar 

  92. Wermer MJ, van der Schaaf IC et al (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38:1404–1410

    Article  PubMed  Google Scholar 

  93. Wiebers DO, Whisnant JP, Huston J 3rd (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110

    Article  PubMed  Google Scholar 

  94. Yasui N, Suzuki A, Nishimura H et al (1997) Long-term follow-up study of unruptured intracranial aneurysms. Neurosurgery 40:1155–1159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research funds of The Helsinki University Central Hospital (EVO Grant TYH 2010209) and research grants from The Sigrid Juselius Foundation, Helsinki, Finland; The Maire Taponen Foundation, Helsinki, Finland; and The Biomedicum Helsinki Foundation, Helsinki, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhana Frösen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frösen, J., Tulamo, R., Paetau, A. et al. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 123, 773–786 (2012). https://doi.org/10.1007/s00401-011-0939-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0939-3

Keywords

Navigation