Skip to main content
Log in

Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Arterial restenosis following stent deployment may be influenced by the local flow environment within and around the stent. We have used computational fluid dynamics to investigate the flow field in the vicinity of model stents positioned within straight and curved vessels. Our simulations have revealed the presence of flow separation and recirculation immediately downstream of stents. In steady flow within straight vessels, the extent of flow disturbance downstream of the stent increases with both Reynolds number and stent wire thickness but is relatively insensitive to stent interwire spacing. In curved vessels, flow disturbance downstream of the stent occurs along both the inner and outer vessel walls with the extent of disturbance dependent on the angle of vessel curvature. In pulsatile flow, the regions of flow disturbance periodically increase and decrease in size. Non-Newtonian fluid properties lead to a modest reduction in flow disturbance downstream of the stent. In more realistic stent geometries such as stents modeled as spirals or as intertwined rings, the nature of stent-induced flow disturbance is exquisitely sensitive to stent design. These results provide an understanding of the flow physics in the vicinity of stents and suggest strategies for stent design optimization to minimize flow disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albuquerque, M. L. C., C. M. Waters, U. Savla, H. W. Schnaper, and A. S. Flozak. Shear stress enhances human endothelial cell wound closure in vitro. Am. J. Physiol. 279:H293–H302, 2000.

    CAS  Google Scholar 

  2. Armaly, B. F., F. Durst, J. C. F. Pereira, and B. Schonung. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127:473–496, 1983.

    Google Scholar 

  3. Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66:1045–1066, 1990.

    CAS  PubMed  Google Scholar 

  4. Barakat, A. I. Responsiveness of vascular endothelium to shear stress: Potential role of ion channels and cellular cytoskeleton. Int. J. Mol. Med. 4:323–332, 1999.

    CAS  PubMed  Google Scholar 

  5. Barakat, A. I., T. Karino, and C. K. Colton. Microcinematographic studies of the flow field in the excised rabbit aorta. Biorheology 34:195–221, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Berger, S. A., L. Talbot, and L.-S. Yao. Flow in curved pipes. Annu. Rev. Fluid Mech. 15:461–512, 1983.

    Article  Google Scholar 

  7. Berry, J. L., A. Santamarina, J. E. Moore, Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stent. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Caro, C. G. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978.

    Google Scholar 

  9. Carter, A. J., D. Scott, J. R. Laird, L. Bailey, J. A. Kovach, T. G. Hoopes, K. Pierce, K. Heath, K. Hess, A. Farb, and R. Virmani. Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding Nitinol stent in an experimental model. Catheter. Cardiovasc. Diag. 44:193–201, 1998.

    Article  CAS  Google Scholar 

  10. Chandran, K. B. Flow dynamics in the human aorta. J. Biomech. Eng. 115:611–616, 1993.

    CAS  PubMed  Google Scholar 

  11. Chappell, D. C., S. E. Varner, R. M. Nerem, R. M. Medford, and R. W. Alexander. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ. Res. 82:532–539, 1998.

    CAS  PubMed  Google Scholar 

  12. Cheer, A. Y., H. A. Dwyer, A. I. Barakat, E. Sy, and M. Bice. Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation. Biorheology 35:415–435, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Chien, S., S. Usami, M. Taylor, J. L. Lundberg, and M. I. Gergersem. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21:81–87, 1966.

    CAS  PubMed  Google Scholar 

  14. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    CAS  PubMed  Google Scholar 

  15. Depaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    CAS  PubMed  Google Scholar 

  16. Emanuelsson, H., W. J. van des Giessen, and P. W. Serruys. Benestent II: Back to the future. J. Intervent. Cardiol. 7:587–592, 1994.

    CAS  PubMed  Google Scholar 

  17. Ettenson, D. S., E. W. Y. Koo, J. L. Januzzi, and E. R. Edelman. Endothelial heparan sulfate is necessary but not sufficient for control of vascular smooth muscle cell growth. J. Cell. Physiol. 184:93–100, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Frank, A. O., P. W. Walsh, and J. E. Moore, Jr. Computational fluid dynamics and stent design. Artif. Organs 26:614–621, 2002.

    Article  PubMed  Google Scholar 

  19. Helmlinger, G., B. C. Berk, and R. M. Nerem. Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ. Am. J. Physiol. 269:C367-C375, 1995.

    CAS  PubMed  Google Scholar 

  20. Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schuhlen, F.-J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, and A. Schomig. Intracoronary stenting and angiographic results—Strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.

    CAS  PubMed  Google Scholar 

  21. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schuhlen, M. Seyfarth, C. Schmitt, R. Blasini, F.-J. Neumann, and A. Schomig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    CAS  PubMed  Google Scholar 

  22. Komatsu, R., M. Ueda, T. Naruko, A. Kojima, and A. T. Becker. Neointimal tissue response at sites of coronary stenting in humans—Macroscopic, histological, and immunohistochemical analyses. Circulation 98:224–233, 1998.

    CAS  PubMed  Google Scholar 

  23. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    CAS  PubMed  Google Scholar 

  24. Lum, R. M., L. M. Wiley, and A. I. Barakat. Influence of different forms of shear stress on vascular endothelial TGF-β1 mRNA expression. Int. J. Mol. Med. 5:635–641, 2000.

    CAS  PubMed  Google Scholar 

  25. Moore, J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and the relationship to atherosclerosis. Atherosclerosis 110:225–240, 1994.

    CAS  PubMed  Google Scholar 

  26. Morice, M.-C., P. W. Serruys, J. E. Sousa, J. Fajadet, E. B. Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnar, and R. Falotico. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346:1773–1780, 2002.

    CAS  PubMed  Google Scholar 

  27. Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Keriakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.

    CAS  PubMed  Google Scholar 

  28. Natarajan, S., and M. R. Mokhtarzadeh-Dehghan. A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Med. Eng. Phys. 22:555–566, 2000.

    CAS  PubMed  Google Scholar 

  29. Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J. Biomech. Eng. 114:274–282, 1992.

    CAS  PubMed  Google Scholar 

  30. Pedley, T. J. The Fluid Mechanics of Large Blood Vessels. Cambridge, UK: Cambridge University Press, 1980.

    Google Scholar 

  31. Resnick, N., and M. A. Gimbrone, M. A., Jr. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9:874–882, 1995.

    CAS  PubMed  Google Scholar 

  32. Rhee, K., and J. M. Tarbell. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and compliant artery. J. Biomech. 27:329–338, 1994.

    CAS  PubMed  Google Scholar 

  33. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.

    CAS  PubMed  Google Scholar 

  34. Rogers, C., S. Parikh, P. Seifert, and E. R. Edelman. Endogenous cell seeding—Remnant endothelium after stenting enhances vascular repair. Circulation 94:2909–2914, 1996.

    CAS  PubMed  Google Scholar 

  35. Schatz, R. A. A view of vascular stents. Circulation 79:445–457, 1989.

    CAS  PubMed  Google Scholar 

  36. Suvatne, J., A. I. Barakat, and M. E. O’Donnell. Shear stress regulation of endothelial Na-K-Cl co-transport expression: Dependence on K+ and Cl channels. Am. J. Physiol. 280:C216–C227, 2001.

    CAS  Google Scholar 

  37. Wentzel, J. J., R. Krams, C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    CAS  PubMed  Google Scholar 

  38. Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 33:1287–1295, 2000.

    CAS  PubMed  Google Scholar 

  39. White, C. R., M. Haidekker, X. P. Bao, and J. A. Frangos. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103:2508–2513, 2001.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul I. Barakat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, T., Schachter, L.G. & Barakat, A.I. Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents. Ann Biomed Eng 33, 444–456 (2005). https://doi.org/10.1007/s10439-005-2499-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2499-y

Keywords

Navigation