Skip to main content
Log in

Endothelial Cell Layer Subjected to Impinging Flow Mimicking the Apex of an Arterial Bifurcation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Little is known about endothelial responses to the impinging flow hemodynamics that occur at arterial bifurcation apices, where intracranial aneurysms usually form. Such hemodynamic environments are characterized by high wall shear stress (WSS >40 dynes/cm2) and high wall shear stress gradients (WSSG >300 dynes/cm3). In this study, confluent bovine aortic endothelial cells were exposed to impinging flow in a T-shaped chamber designed to mimic a bifurcation. After 24–72 h under flow, cells around the stagnation point maintained polygonal shapes but cell density was reduced, whereas cells in adjacent downstream regions exposed to very high WSS and WSSG were elongated, aligned parallel to flow, and at higher density. Such behavior was not blocked by inhibiting proliferation, indicating that cells migrated downstream from the stagnation point in response to impinging flow. Furthermore, although the area of highest cell density moved downstream and away from the impingement point over time, it never moved beyond the WSS maximum. The accumulation of cells upstream of maximal WSS and downstream of maximal WSSG suggests that positive WSSG is responsible for the observed migration. These results demonstrate a unique endothelial response to aneurysm-promoting flow environments at bifurcation apices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abramoff M. D., P. J. Magelhaes, S. J. Ram Image processing with imageJ. Biophoton. Int. 11: 36–42, 2004

    Google Scholar 

  2. Akahane T., M. Akahane, A. Shah, C. M. Connor, U. P. Thorgeirsson TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms. Exp. Cell Res. 301: 158–167, 2004. doi:10.1016/j.yexcr.2004.08.002

    Article  PubMed  CAS  Google Scholar 

  3. Akimoto S., M. Mitsumata, T. Sasaguri, Y. Yoshida Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ. Res. 86: 185–190, 2000

    PubMed  CAS  Google Scholar 

  4. Akinaga S., K. Nomura, K. Gomi, M. Okabe Enhancement of antitumor activity of mitomycin C in vitro and in vivo by UCN-01, a selective inhibitor of protein kinase C. Cancer Chemother. Pharmacol. 32: 183–189, 1993. doi:10.1007/BF00685833

    Article  PubMed  CAS  Google Scholar 

  5. Albuquerque M. L., C. M. Waters, U. Savla, H. W. Schnaper, A. S. Flozak Shear stress enhances human endothelial cell wound closure in vitro. Am. J. Physiol. 279: H293–302, 2000

    CAS  Google Scholar 

  6. Caro C. G., J. M. Fitz-Gerald, R. C. Schroter Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B Biol. Sci. 177: 109–159, 1971

    PubMed  CAS  Google Scholar 

  7. Chen B. P., Y. S. Li, Y. Zhao, K. D. Chen, S. Li, J. Lao, S. Yuan, J. Y. Shyy, S. Chien DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol. Genomics 7: 55–63, 2001. doi:10.1006/geno.2001.6511

    Article  PubMed  CAS  Google Scholar 

  8. Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292: H1209–1224, 2007. doi:10.1152/ajpheart.01047.2006

    Article  PubMed  CAS  Google Scholar 

  9. Chien S., S. Li, Y. J. Shyy Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31: 162–169, 1998

    PubMed  CAS  Google Scholar 

  10. Chiu J. J., C. N. Chen, P. L. Lee, C. T. Yang, H. S. Chuang, S. Chien, S. Usami Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J. Biomech. 36: 1883–1895, 2003. doi:10.1016/S0021-9290(03)00210-0

    Article  PubMed  Google Scholar 

  11. Chiu J. J., D. L. Wang, S. Chien, R. Skalak, S. Usami Effects of disturbed flow on endothelial cells. J. Biomech. Eng. 120: 2–8, 1998. doi:10.1115/1.2834303

    Article  PubMed  CAS  Google Scholar 

  12. Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75: 519–560, 1995

    PubMed  CAS  Google Scholar 

  13. DePaola N., P. F. Davies, W. F. Pritchard Jr., L. Florez, N. Harbeck, D. C. Polacek Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. USA 96: 3154–3159, 1999. doi:10.1073/pnas.96.6.3154

    Article  PubMed  CAS  Google Scholar 

  14. DePaola N., M. A. Gimbrone Jr., P. F. Davies, C. F. Dewey Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12: 1254–1257, 1992

    PubMed  CAS  Google Scholar 

  15. Gao L., Y. Hoi, D. D. Swartz, J. Kolega, A. Siddiqui, H. Meng (2008) Nascent aneurysm formation at basilar terminus induced by hemodynamics. Stroke 39:2085–2090

    Article  PubMed  Google Scholar 

  16. Glagov S., C. Zarins, D. P. Giddens, D. N. Ku Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112: 1018–1031, 1988

    PubMed  CAS  Google Scholar 

  17. Hashimoto N., H. Handa, I. Nagata, F. Hazama 1980 Experimentally induced cerebral aneurysms in rats: Part V. Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg. Neurol. 13: 41–45

    PubMed  CAS  Google Scholar 

  18. Himburg H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, M. H. Friedman Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286: H1916–1922, 2004. doi:10.1152/ajpheart.00897.2003

    Article  PubMed  CAS  Google Scholar 

  19. Hoi Y., H. Meng, S. H. Woodward, B. R. Bendok, R. A. Hanel, L. R. Guterman, L. N. Hopkins Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J. Neurosurg. 101: 676–681, 2004

    Article  PubMed  Google Scholar 

  20. Hoi Y., S. H. Woodward, M. Kim, D. B. Taulbee, H. Meng Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128: 844–851, 2006. doi:10.1115/1.2354209

    Article  PubMed  Google Scholar 

  21. Hsu P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, S. Chien Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285: 751–759, 2001. doi:10.1006/bbrc.2001.5221

    Article  PubMed  CAS  Google Scholar 

  22. Krex D., H. K. Schackert, G. Schackert Genesis of cerebral aneurysms – an update. Acta Neurochir. (Wien) 143: 429–448; 2001; discussion 448–429

    Article  CAS  Google Scholar 

  23. LaMack J. A., M. H. Friedman Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol. Heart Circ. Physiol. 293: H2853–2859, 2007. doi:10.1152/ajpheart.00244.2007

    Article  PubMed  CAS  Google Scholar 

  24. LaMack J. A., H. A. Himburg, X. M. Li, M. H. Friedman Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability. Ann. Biomed. Eng. 33: 457–464, 2005. doi:10.1007/s10439-005-2500-9

    Article  PubMed  Google Scholar 

  25. Meng H., D. D. Swartz, Z. Wang, Y. Hoi, J. Kolega, E. M. Metaxa, M. P. Szymanski, J. Yamamoto, E. Sauvageau, E. I. Levy A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery 59: 1094–1100; 2006, discussion 1100–1091

    Article  PubMed  Google Scholar 

  26. Meng H., Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz, J. Kolega Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38: 1924–1931, 2007. doi:10.1161/STROKEAHA.106.481234

    Article  PubMed  Google Scholar 

  27. Sho E., M. Komatsu, M. Sho, H. Nanjo, T. M. Singh, C. Xu, H. Masuda, C. K. Zarins High flow drives vascular endothelial cell proliferation during flow-induced arterial remodeling associated with the expression of vascular endothelial growth factor. Exp. Mol. Pathol. 75: 1–11, 2003. doi:10.1016/S0014-4800(03)00032-7

    Article  PubMed  CAS  Google Scholar 

  28. Shojima M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, T. Kirino Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35: 2500–2505, 2004. doi:10.1161/01.STR.0000144648.89172.0f

    Article  PubMed  Google Scholar 

  29. Stehbens W. E. Histopathology of cerebral aneurysms. Arch Neurol. 8: 272–285, 1963

    PubMed  CAS  Google Scholar 

  30. Tardy Y., N. Resnick, T. Nagel, M. A. Gimbrone Jr., C. F. Dewey Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17: 3102–3106, 1997

    PubMed  CAS  Google Scholar 

  31. Tzima E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, M. A. Schwartz A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 437: 426–431, 2005. doi:10.1038/nature03952

    Article  PubMed  CAS  Google Scholar 

  32. Wechezak A. R., D. E. Coan, R. F. Viggers, L. R. Sauvage Dextran increases survival of subconfluent endothelial cells exposed to shear stress. Am. J. Physiol. 264: H520–525, 1993

    PubMed  CAS  Google Scholar 

  33. White C. R., M. Haidekker, X. Bao, J. A. Frangos Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103: 2508–2513, 2001

    PubMed  CAS  Google Scholar 

  34. Wright H. P. Endothelial mitosis around aortic branches in normal guinea pigs. Nature 220: 78–79, 1968. doi:10.1038/220078a0

    Article  PubMed  CAS  Google Scholar 

  35. Zarins C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, S. Glagov Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53: 502–514, 1983

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yiemeng Hoi for CFD simulations, Daniel D. Swartz, Zhijie Wang, and Jennifer Dolan for critical suggestions to this study, and Scott W. Woodward for technical assistance in the flow chamber design. This work was supported by the NIH under Grant NS047242, NSF under Grant BES-0302389, and by the Cummings Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szymanski, M.P., Metaxa, E., Meng, H. et al. Endothelial Cell Layer Subjected to Impinging Flow Mimicking the Apex of an Arterial Bifurcation. Ann Biomed Eng 36, 1681–1689 (2008). https://doi.org/10.1007/s10439-008-9540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9540-x

Keywords

Navigation