Skip to main content
Log in

Simulation of Intrathrombus Fluid and Solute Transport Using In Vivo Clot Structures with Single Platelet Resolution

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mouse laser injury thrombosis model provides up to 0.22 μm-resolved voxel information about the pore architecture of the dense inner core and loose outer shell regions of an in vivo arterial thrombus. Computational studies were conducted on this 3D structure to quantify transport within and around the clot: Lattice Boltzmann method defined vessel hemodynamics, while passive Lagrangian Scalar Tracking with Brownian motion contribution simulated diffusive-convective transport of various inert solutes (released from lumen or the injured wall). For an input average lumen blood velocity of 0.478 cm/s (measured by Doppler velocimetry), a 0.2 mm/s mean flow rate was obtained within the thrombus structure, most of which occurred in the 100-fold more permeable outer shell region (calculated permeability of the inner core was 10−11 cm2). Average wall shear stresses were 80–100 dyne/cm2 (peak values >200 dyne/cm2) on the outer rough surface of the thrombus. Within the thrombus, small molecule tracers (0.1 kDa) experienced ~70,000 collisions/s and penetrated/exited it in about 1 s, whereas proteins (~50 kDa) had ~9000 collisions/s and required about 10 s (tortuosity ~2–2.5). These simulations help define physical processes during thrombosis and constraints for drug delivery to the thrombus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agard, D. A., Y. Hiraoka, P. Shaw, and J. W. Sedat. Fluorescence microscopy in 3 dimensions. Methods Cell Biol. 30:353–377, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Barber, C. B., D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4):469–483, 1996.

    Article  Google Scholar 

  3. Bellido-Martin, L., V. Chen, R. Jasuja, B. Furie, and B. C. Furie. Imaging fibrin formation and platelet and endothelial cell activation in vivo. Thromb. Haemost. 105(5):776–782, 2011.

    Article  PubMed  CAS  Google Scholar 

  4. Bhatnagar, P. L., E. P. Gross, and M. Krook. A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3):511–525, 1954.

    Article  CAS  Google Scholar 

  5. Borders, J. L., and H. J. Granger. An optical Doppler intravital velocimeter. Microvasc. Res. 27(1):117–127, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Boyd, J., J. Buick, and S. Green. A second-order accurate lattice Boltzmann non-Newtonian flow model. J. Phys. A 39(46):14241–14247, 2006.

    Article  Google Scholar 

  7. Brass, L. F., K. M. Wannemacher, P. Ma, and T. J. Stalker. Regulating thrombus growth and stability to achieve an optimal response to injury. J. Thromb. Haemost. 9(s1):66–75, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Brinkman, H. C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1(1):27–34, 1947.

    Article  Google Scholar 

  9. Chen, S., and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30:329–364, 1998.

    Article  Google Scholar 

  10. Colace, T., E. Falls, X. L. Zheng, and S. L. Diamond. Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow. Ann. Biomed. Eng. 39(2):922–929, 2011.

    Article  PubMed  CAS  Google Scholar 

  11. Comerford, A., M. J. Plank, and T. David. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J. Biomech. Eng. Trans. ASME 130(1):011010, 2008.

    Article  CAS  Google Scholar 

  12. Cosgrove, J. A., J. M. Buick, S. J. Tonge, C. G. Munro, C. A. Greated, and D. M. Campbell. Application of the Lattice Boltzmann method to transition in oscillatory channel flow. J. Phys. A 36(10):2609–2620, 2003.

    Article  Google Scholar 

  13. Davis, M. J. Determination of volumetric flow in capillary tubes using an optical Doppler-velocimeter. Microvasc. Res. 34(2):223–230, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Desjardins, C., and B. R. Duling. Microvessel hematocrit—measurement and implications for capillary oxygen-transport. Am. J. Physiol. 252(3):H494–H503, 1987.

    PubMed  CAS  Google Scholar 

  15. Einstein, A. The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat. Ann. Phys. 17(8):549–560, 1905.

    Article  CAS  Google Scholar 

  16. Falati, S., P. Gross, G. Merrill-Skoloff, B. C. Furie, and B. Furie. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 8(10):1175–1181, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Gabbanelli, S., G. Drazer, and J. Koplik. Lattice Boltzmann method for non-Newtonian (power-law) fluids. Phys. Rev. E 72(4):046312–046317, 2005.

    Article  Google Scholar 

  18. Granger, D. N., J. N. Benoit, M. Suzuki, and M. B. Grisham. Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am. J. Physiol. 257(5):G683–G688, 1989.

    PubMed  CAS  Google Scholar 

  19. Holme, P. A., U. Orvim, M. J. A. G. Hamers, N. O. Solum, F. R. Brosstad, R. M. Barstad, and K. S. Sakariassen. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler. Thromb. Vasc. Biol. 17(4):646–653, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Kandhai, D., A. Koponen, A. G. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot. Lattice-Boltzmann hydrodynamics on parallel systems. Comput. Phys. Commun. 111(1–3):14–26, 1998.

    Article  CAS  Google Scholar 

  21. Kim, M. B., and I. H. Sarelius. Distributions of wall shear stress in venular convergences of mouse cremaster muscle. Microcirculation 10(2):167–178, 2003.

    PubMed  Google Scholar 

  22. Levine, H. A., M. P. McGee, and S. Serna. Diffusion and reaction in the cell glycocalyx and the extracellular matrix. J. Math. Biol. 60(1):1–26, 2010.

    Article  PubMed  Google Scholar 

  23. Lipowsky, H. H. Microvascular rheology and hemodynamics. Microcirculation 12(1):5–15, 2005.

    Article  PubMed  Google Scholar 

  24. Lipowsky, H. H., S. Kovalcheck, and B. W. Zweifach. Distribution of blood rheological parameters in microvasculature of cat mesentery. Circ. Res. 43(5):738–749, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumoto, M., and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. (TOMACS) 8(1):3–30, 1998.

    Article  Google Scholar 

  26. Merrill, E. W., and G. A. Pelletie. Viscosity of human blood—transition from Newtonian to non-Newtonian. J. Appl. Physiol. 23(2):178–182, 1967.

    PubMed  CAS  Google Scholar 

  27. Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15(6):665–673, 2009.

    Article  PubMed  CAS  Google Scholar 

  28. Papavassiliou, D. V. Turbulent transport from continuous sources at the wall of a channel. Int. J. Heat Mass Transf. 45(17):3571–3583, 2002.

    Article  CAS  Google Scholar 

  29. Papavassiliou, D. V., and T. J. Hanratty. The use of Lagrangian-methods to describe turbulent transport of heat from a wall. Ind. Eng. Chem. Res. 34(10):3359–3367, 1995.

    Article  CAS  Google Scholar 

  30. Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. 38(3):543–549, 2005.

    Article  PubMed  Google Scholar 

  31. Qian, Y. H., D. Dhumieres, and P. Lallemand. Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6):479–484, 1992.

    Article  Google Scholar 

  32. Sakariassen, K. S., P. A. Holme, U. Orvim, R. M. Barstad, N. O. Solum, and F. R. Brosstad. Shear-induced platelet activation and platelet microparticle formation in native human blood. Thromb. Res. 92(6):S33–S41, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Skartsis, L., J. L. Kardos, and B. Khomami. Resin flow through fiber beds during composite manufacturing processes. 1. Review of Newtonian flow through fiber beds. Polym. Eng. Sci. 32(4):221–230, 1992.

    Article  CAS  Google Scholar 

  34. Stalker, T. J., E. A. Traxler, J. Wu, K. M. Wannemacher, S. L. Cermignano, R. S. Voronov, S. L. Diamond, and L. F. Brass. Hierarchical organization in the hemostatic response and its relationship to the platelet signaling network. Blood (blood-2012-09-457739; published ahead of print January 9, 2013, doi:10.1182/blood-2012-09-457739), 2012.

  35. Succi, S. The Lattice Boltzmann equation for fluid dynamics and beyond. New York: Clarendon Press/Oxford University Press, 2001.

    Google Scholar 

  36. Sukop, M. C., D. T. Thorne, and NetLibrary Inc. Lattice Boltzmann Modeling an Introduction for Geoscientists and Engineers. Berlin: Springer, ix, 172 pp., 2006.

  37. Swift, M. R., E. Orlandini, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54(5):5041–5052, 1996.

    Article  CAS  Google Scholar 

  38. VanGordon, S., R. S. Voronov, T. B. Blue, R. L. Shambaugh, D. V. Papavassiliou, and V. I. Sikavitsas. Effects of scaffold architecture on preosteoblastic cultures under continuous fluid shear. Ind. Eng. Chem. Res. 50(2):620–629, 2010.

    Article  Google Scholar 

  39. Wang, J. Y., X. X. Zhang, A. G. Bengough, and J. W. Crawford. Domain-decomposition method for parallel Lattice Boltzmann simulation of incompressible flow in porous media. Phys. Rev. E 72(1):016706–016711, 2005.

    Article  Google Scholar 

  40. Wang, W. W., and M. R. King. Multiscale modeling of platelet adhesion and thrombus growth. Ann. Biomed. Eng. 40(11):2345–2354, 2012.

    Article  PubMed  Google Scholar 

  41. Windberger, U., A. Bartholovitsch, R. Plasenzotti, K. J. Korak, and G. Heinze. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp. Physiol. 88(3):431–440, 2003.

    Article  PubMed  CAS  Google Scholar 

  42. Xu, Z. L., N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, and M. Alber. Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5(4):769–779, 2009.

    Article  CAS  Google Scholar 

  43. Yoshino, A., Y. Hotta, T. Hirozane, and M. Endo. A numerical method for incompressible non-newtonian fluid flows based on the Lattice Boltzmann method. J. Nonnewton. Fluid Mech. 147(1–2):69–78, 2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from NIH R01-HL103419 and AHA 11POST6890012 grants. Computation was carried under TERAGRID supercomputing allocation TG-IBN110004 on the Lonestar linux cluster (Texas Advanced Computing Center). We would also like to acknowledge Dr. Papavassiliou’s Computational Transport Processes Laboratory at the University of Oklahoma, since a considerable portion of the code used in this study was written as a part of a PhD dissertation there. Finally, we would like to thank Dr. Henry J. Neeman, Dr. Raghu Reddy, and the whole OU Supercomputing Center for Education & Research (OSCER) team for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Diamond.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1010 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, R.S., Stalker, T.J., Brass, L.F. et al. Simulation of Intrathrombus Fluid and Solute Transport Using In Vivo Clot Structures with Single Platelet Resolution. Ann Biomed Eng 41, 1297–1307 (2013). https://doi.org/10.1007/s10439-013-0764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0764-z

Keywords

Navigation