Skip to main content
Log in

Physical Factors Effecting Cerebral Aneurysm Pathophysiology

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many factors that are either blood-, wall-, or hemodynamics-borne have been associated with the initiation, growth, and rupture of intracranial aneurysms. The distribution of cerebral aneurysms around the bifurcations of the circle of Willis has provided the impetus for numerous studies trying to link hemodynamic factors (flow impingement, pressure, and/or wall shear stress) to aneurysm pathophysiology. The focus of this review is to provide a broad overview of such hemodynamic associations as well as the subsumed aspects of vascular anatomy and wall structure. Hemodynamic factors seem to be correlated to the distribution of aneurysms on the intracranial arterial tree and complex, slow flow patterns seem to be associated with aneurysm growth and rupture. However, both the prevalence of aneurysms in the general population and the incidence of ruptures in the aneurysm population are extremely low. This suggests that hemodynamic factors and purely mechanical explanations by themselves may serve as necessary, but never as necessary and sufficient conditions of this disease’s causation. The ultimate cause is not yet known, but it is likely an additive or multiplicative effect of a handful of biochemical and biomechanical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Acar, F., S. Men, V. Tayfur, O. Yilmaz, S. Erbayraktar, and E. Metin Güner. In vivo intraaneurysmal pressure measurements in experimental lateral wall aneurysms before and after onyx embolization. Surg. Neurol. 66:252–256, 2006.

    Article  PubMed  Google Scholar 

  2. Alnaes, M. S., J. Isaksen, K. A. Mardal, B. Romner, M. K. Morgan, and T. Ingebrigtsen. Computation of hemodynamics in the circle of Willis. Stroke 38:2500–2505, 2007.

    Article  PubMed  Google Scholar 

  3. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46:1097–1112, 2008.

    Article  PubMed  Google Scholar 

  4. Baharoglu, M. I., A. Lauric, B. L. Gao, and A. M. Malek. Identification of a dichotomy in morphological predictors of rupture status between sidewall- and bifurcation-type intracranial aneurysms. J. Neurosurg. 116:871–881, 2012.

    Article  PubMed  Google Scholar 

  5. Bai-Nan, X., W. Fu-Yu, L. Lei, Z. Xiao-Jun, and J. Hai-Yue. Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms. Neurosurg. Rev. 34:39–47, 2011.

    Article  PubMed  Google Scholar 

  6. Balocco, S., O. Camara, E. Vivas, T. Sola, L. Guimaraens, H. A. Gratama van Andel, C. B. Majoie, J. M. Pozo, B. H. Bijnens, and A. F. Frangi. Feasibility of estimating regional mechanical properties of cerebral aneurysms in vivo. Med. Phys. 37:1689–1706, 2010.

    Article  PubMed  Google Scholar 

  7. Bazilevs, Y., M. C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. G. Isaksen. Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Biomech. Model. Mechanobiol. 9:481–498, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. Bazilevs, Y., M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. G. Isaksen. A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput. Mech. 46:3–16, 2010

    Google Scholar 

  9. Beck, J., S. Rohde, J. Berkefeld, V. Seifert, and A. Raabe. Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg. Neurol. 65:18–25, 2006.

    Article  PubMed  Google Scholar 

  10. Benndorf, G., E. Wellnhofer, W. Lanksch, and R. Felix. Intraaneurysmal flow: evaluation with Doppler guidewires. AJNR Am. J. Neuroradiol. 17:1333–1337, 1996.

    PubMed  CAS  Google Scholar 

  11. Bernsdorf, J., and D. Wang. Non-Newtonian blood flow simulation in cerebral aneurysms. Comput. Math. Appl. 58:1024–1029, 2009.

    Article  Google Scholar 

  12. Bor, A. S., B. K. Velthuis, C. B. Majoie, and G. J. Rinkel. Configuration of intracranial arteries and development of aneurysms: a follow-up study. Neurology 70:700–705, 2008.

    Article  PubMed  Google Scholar 

  13. Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.

    Article  PubMed  Google Scholar 

  14. Brisman, J. L., J. K. Song, and D. W. Newell. Cerebral aneurysms. N. Engl. J. Med. 355:928–939, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Burleson, A. C., C. M. Strother, and V. T. Turitto. Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 37:774–782, 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Canham, P. B., and H. M. Finlay. Morphometry of medial gaps of human brain artery branches. Stroke 35:1153–1157, 2004.

    Article  PubMed  Google Scholar 

  17. Carter, B. S., S. Sheth, E. Chang, M. Sethl, and C. S. Ogilvy. Epidemiology of the size distribution of intracranial bifurcation aneurysms: smaller size of distal aneurysms and increasing size of unruptured aneurysms with age. Neurosurgery 58:217–223, 2006.

    Article  PubMed  Google Scholar 

  18. Castro, M. A., C. M. Putman, and J. R. Cebral. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am. J. Neuroradiol. 27:1703–1709, 2006.

    PubMed  CAS  Google Scholar 

  19. Castro, M. A., C. M. Putman, and J. R. Cebral. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad Radiol. 13:811–821, 2006.

    Article  PubMed  Google Scholar 

  20. Castro, M. A., C. M. Putman, M. J. Sheridan, and J. R. Cebral. Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am. J. Neuroradiol. 30:297–302, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24:457–467, 2005.

    Article  PubMed  Google Scholar 

  22. Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26:2550–2559, 2005.

    PubMed  Google Scholar 

  23. Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. AJNR Am. J. Neuroradiol. 33:396–398, 2012.

    Article  PubMed  CAS  Google Scholar 

  24. Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32:264–270, 2011.

    Article  PubMed  CAS  Google Scholar 

  25. Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32:145–151, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Cebral, J. R., M. Sheridan, and C. M. Putman. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am. J. Neuroradiol. 31:304–310, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Chang, H. H., G. R. Duckwiler, D. J. Valentine, and W. C. Chu. Computer-assisted extraction of intracranial aneurysms on 3D rotational angiograms for computational fluid dynamics modeling. Med. Phys. 36:5612–5621, 2009.

    Article  PubMed  Google Scholar 

  28. Chyatte, D., and I. Lewis. Gelatinase activity and the occurrence of cerebral aneurysms. Stroke 28:799–804, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Costalat, V., M. Sanchez, D. Ambard, L. Thines, N. Lonjon, F. Nicoud, H. Brunel, J. P. Lejeune, H. Dufour, P. Bouillot, J. P. Lhaldky, K. Kouri, F. Segnarbieux, C. A. Maurage, K. Lobotesis, M. C. Villa-Uriol, C. Zhang, A. F. Frangi, G. Mercier, A. Bonafé, L. Sarry, and F. Jourdan. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J. Biomech. 44:2685–2691, 2011.

    Google Scholar 

  30. Crawford, T. Some observations on the pathogenesis and natural history of intracranial aneurysms. J. Neurol. Neurosurg. Psychiatry 22:259–266, 1959.

    Article  PubMed  CAS  Google Scholar 

  31. Crompton, M. R. Mechanism of growth and rupture in cerebral berry aneurysms. Br. Med. J. 1:1138–1142, 1966.

    Article  PubMed  CAS  Google Scholar 

  32. David, G., and J. D. Humphrey. Further evidence for the dynamic stability of intracranial saccular aneurysms. J. Biomech. 36:1143–1150, 2003.

    Article  PubMed  CAS  Google Scholar 

  33. de Rooij, N. K., F. H. Linn, J. A. van der Plas, A. Algra, and G. J. Rinkel. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J. Neurol. Neurosurg. Psychiatry 78:1365–1372, 2007.

    Article  PubMed  Google Scholar 

  34. de Rooij, N. K., B. K. Velthuis, A. Algra, and G. J. Rinkel. Configuration of the circle of Willis, direction of flow, and shape of the aneurysm as risk factors for rupture of intracranial aneurysms. J. Neurol. 256:45–50, 2009.

    Article  PubMed  Google Scholar 

  35. Di Achille, P., and J. D. Humphrey. Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. Yale J. Biol. Med. 85:217–228, 2012.

    PubMed  Google Scholar 

  36. Feigin, V. L., G. J. Rinkel, C. M. Lawes, A. Algra, D. A. Bennett, J. van Gijn, and C. S. Anderson. Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke 36:2773–2780, 2005.

    Article  PubMed  Google Scholar 

  37. Feng, Y., S. Wada, K. Tsubota, and T. Yamaguchi. The application of computer simulation in the genesis and development of intracranial aneurysms. Technol. Health Care 13:281–291, 2005.

    PubMed  Google Scholar 

  38. Ferguson, G. G. Turbulence in human intracranial saccular aneurysms. J. Neurosurg. 33:485–497, 1970.

    Article  PubMed  CAS  Google Scholar 

  39. Ferguson, G. G. Direct measurement of mean and pulsatile blood pressure at operation in human intracranial saccular aneurysms. J. Neurosurg. 36:560–563, 1972.

    Article  PubMed  CAS  Google Scholar 

  40. Ferguson, G. G. Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J. Neurosurg. 37:666–677, 1972.

    Article  PubMed  CAS  Google Scholar 

  41. Ferns, S. P., J. J. Schneiders, M. Siebes, R. van den Berg, E. T. van Bavel, and C. B. Majoie. Intracranial blood-flow velocity and pressure measurements using an intra-arterial dual-sensor guidewire. AJNR Am. J. Neuroradiol. 31:324–326, 2010.

    Article  PubMed  CAS  Google Scholar 

  42. Fisher, C., and J. S. Rossmann. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms. J. Biomech. Eng. 131:091004, 2009.

    Article  PubMed  Google Scholar 

  43. Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26:477–488, 2005.

    Article  PubMed  Google Scholar 

  44. Ford, M. D., S. W. Lee, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: towards a surrogate geometric marker of intra-aneurismal hemodynamics. J. Biomech. 41:241–248, 2008.

    Article  PubMed  Google Scholar 

  45. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015, 2008.

    Article  PubMed  Google Scholar 

  46. Forget, T. R., Jr., R. Benitez, E. Veznedaroglu, A. Sharan, W. Mitchell, M. Silva, and R. H. Rosenwasser. A review of size and location of ruptured intracranial aneurysms. Neurosurgery 49:1322–1325, 2001

    Google Scholar 

  47. Foutrakis, G. N., H. Yonas, and R. J. Sclabassi. Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am. J. Neuroradiol. 20:1309–1317, 1999.

    PubMed  CAS  Google Scholar 

  48. Frösen, J., A. Piippo, A. Paetau, M. Kangasniemi, M. Niemelä, J. Hernesniemi, and J. Jaaskelainen. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293, 2004.

    Article  PubMed  Google Scholar 

  49. Frösen, J., R. Tulamo, A. Paetau, E. Laaksamo, M. Korja, A. Laakso, M. Niemelä, and J. Hernesniemi. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 123:773–786, 2012.

    Article  PubMed  Google Scholar 

  50. Gambaruto, A. M., and A. J. João. Flow structures in cerebral aneurysms. Comput. Fluids 65:56–65, 2012.

    Article  Google Scholar 

  51. German, W. J., and S. P. Black. Intra-aneurysmal hemodynamics-jet action. Circ. Res. 3:463–468, 1955.

    Article  PubMed  CAS  Google Scholar 

  52. Glynn, L. E. Medial defects in the circle of Willis and their relation to aneurysm formation. J. Pathol. Bacteriol. 51:213–222, 1940.

    Article  Google Scholar 

  53. Gobin, Y. P., J. L. Counord, P. Flaud, and J. Duffaux. In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 36:530–536, 1994.

    Article  PubMed  CAS  Google Scholar 

  54. Gonzalez, C. F., Y. I. Cho, H. V. Ortega, and J. Moret. Intracranial aneurysms: flow analysis of their origin and progression. AJNR Am. J. Neuroradiol. 13:181–188, 1992.

    PubMed  CAS  Google Scholar 

  55. Goubergrits, L., J. Schaller, U. Kertzscher, N. van den Bruck, K. Poethkow, Ch Petz, H. C. Hege, and A. Spuler. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. J. R. Soc. Interface 9:677–688, 2012.

    Article  PubMed  CAS  Google Scholar 

  56. Grinberg, L., and G. E. Karniadakis. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng. 36:1496–1514, 2008.

    Article  PubMed  Google Scholar 

  57. Gwilliam, M. N., N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson. MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J. Cereb. Blood Flow Metab. 29:1975–1982, 2009.

    Article  PubMed  Google Scholar 

  58. Hademenos, G. J. The physics of cerebral aneurysms. Phys. Today 48:24–30, 1995.

    Article  Google Scholar 

  59. Hademenos, G. J., T. F. Massoud, F. Turjman, and J. W. Sayre. Anatomical and morphological factors correlating with rupture of intracranial aneurysms in patients referred for endovascular treatment. Neuroradiology 40:755–760, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Hashimoto, T. Flow velocity studies in vein pouch model aneurysms. Neurol. Res. 15:185–191, 1993.

    PubMed  CAS  Google Scholar 

  61. Haslach, Jr., H. W. A nonlinear dynamical mechanism for bruit generation by an intracranial saccular aneurysm. J. Math. Biol. 45:441–460, 2002.

    Article  PubMed  Google Scholar 

  62. Hassan, T., E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto, K. Takayama, T. Tominaga, and A. Takahashi. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. J. Neurosurg. 103:662–680, 2005.

    Article  PubMed  Google Scholar 

  63. Hassan, T., E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, T. Tominaga, A. Takahashi, and K. Takayama. Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography. AJNR Am. J. Neuroradiol. 25:1356–1365, 2004.

    PubMed  Google Scholar 

  64. Hayakawa, M., S. Maeda, A. Sadato, T. Tanaka, T. Kaito, N. Hattori, T. Ganaha, S. Moriya, K. Katada, K. Murayama, Y. Kato, and Y. Hirose. Detection of pulsation in ruptured and unruptured cerebral aneurysms by electrocardiographically gated 3-dimensional computed tomographic angiography with a 320-row area detector computed tomography and evaluation of its clinical usefulness. Neurosurgery 69:843–851, 2011.

    Article  PubMed  Google Scholar 

  65. Hayashi, K., H. Handa, S. Nagasawa, A. Okumura, and K. Moritake. Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 13:175–184, 1980.

    Article  PubMed  CAS  Google Scholar 

  66. Hollnagel, D. I., P. E. Summers, D. Poulikakos, and S. S. Kollias. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics. NMR Biomed. 22:795–808, 2009.

    Article  PubMed  Google Scholar 

  67. Holscher, T., J. Rodriguez-Rodriguez, W. G. Wilkening, J. C. Lasheras, and H. S. U. Intraoperative brain ultrasound: a new approach to study flow dynamics in intracranial aneurysms. Ultrasound Med. Biol. 32:1307–1313, 2006.

  68. Humphrey, J. D., S. Baek, and K. R. Rajagopal. Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J. Elast. 80:13–31, 2005.

    Article  Google Scholar 

  69. Humphrey, J. D., and S. K. Kyriacou. The use of Laplace’s equation in aneurysm mechanics. Neurol. Res. 18:204–208, 1996.

    PubMed  CAS  Google Scholar 

  70. Imai, Y., K. Sato, T. Ishikawa, and T. Yamaguchi. Inflow into saccular cerebral aneurysms at arterial bends. Ann. Biomed. Eng. 36:1489–1495, 2008.

    Article  PubMed  Google Scholar 

  71. Imbesi, S. G., and C. W. Kerber. Analysis of slipstream flow in two ruptured intracranial cerebral aneurysms. AJNR Am. J. Neuroradiol. 20:1703–1705, 1999.

    PubMed  CAS  Google Scholar 

  72. Inci, S., and R. F. Spetzler. Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg. Neurol. 53:530–540; discussion 540–532, 2000.

    Google Scholar 

  73. Ingebrigtsen, T., M. K. Morgan, K. Faulder, L. Ingebrigtsen, T. Sparr, and H. Schirmer. Bifurcation geometry and the presence of cerebral artery aneurysms. J. Neurosurg. 101:108–113, 2004.

    Article  PubMed  Google Scholar 

  74. Isoda, H., Y. Ohkura, T. Kosugi, M. Hirano, H. Takeda, H. Hiramatsu, S. Yamashita, Y. Takehara, M. T. Alley, R. Bammer, N. J. Pelc, H. Namba, and H. Sakahara. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 52:921–928, 2010

    Google Scholar 

  75. Jeong, Y. G., Y. T. Jung, M. S. Kim, C. K. Eun, and S. H. Jang. Size and location of ruptured intracranial aneurysms. J. Korean Neurosurg. Soc. 45:11–15, 2009.

    Article  PubMed  Google Scholar 

  76. Jeong, W., and K. Rhee. Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment. Comput. Math. Methods Med. 782801, 2012.

  77. Jones, S. A., and A. Fronek. Effects of vibrations on steady flow downstream of a stenosis. J. Biomech. 21:903–914, 1988.

    Article  PubMed  CAS  Google Scholar 

  78. Joo, S. W., S. I. Lee, S. J. Noh, Y. G. Jeong, M. S. Kim, and Y. T. Jeong. What is the significance of a large number of ruptured aneurysms smaller than 7 mm in diameter? J. Korean Neurosurg. Soc. 45:85–89, 2009.

    Article  PubMed  Google Scholar 

  79. Jou, L. D., D. H. Lee, H. Morsi, and M. E. Mawad. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 29:1761–1767, 2008

    Google Scholar 

  80. Juvela, S. Prehemorrhage risk factors for fatal intracranial aneurysm rupture. Stroke 34:1852–1857, 2003.

    Article  PubMed  Google Scholar 

  81. Juvela, S., M. Hillbom, H. Numminen, and P. Koskinen. Cigarette smoking and alcohol consumption as risk factors for aneurysmal subarachnoid hemorrhage. Stroke 24:639–646, 1993.

    Article  PubMed  CAS  Google Scholar 

  82. Juvela, S., M. Porras, and K. Poussa. Natural history of unruptured intracranial aneurysms: probability and risk factors for aneurysm rupture. Neurosurg. Focus 8:1–9, 2000.

    Google Scholar 

  83. Kallmes, D. F. Point: CFD—computational fluid dynamics or confounding factor dissemination. AJNR Am. J. Neuroradiol. 33:395–396, 2012.

    Article  PubMed  CAS  Google Scholar 

  84. Kapoor, K., B. Singh, and L. I. Dewan. Variations in the configuration of the circle of Willis. Anat. Sci. Int. 83:96–106, 2008.

    Article  PubMed  Google Scholar 

  85. Karmonik, C., O. Diaz, R. Grossman, and R. Klucznik. In-vivo quantification of wall motion in cerebral aneurysms from 2D cine phase contrast magnetic resonance images. Rofo 182:140–150, 2010.

    Article  PubMed  CAS  Google Scholar 

  86. Karmonik, C., C. Yen, O. Diaz, R. Klucznik, R. G. Grossman, and G. Benndorf. Temporal variations of wall shear stress parameters in intracranial aneurysms—importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir. (Wien). 152:1391–1398, 2010.

    Article  Google Scholar 

  87. Karmonik, C., C. Yen, R. G. Grossman, R. Klucznik, and G. Benndorf. Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates. Acta Neurochir. (Wien). 151:479–485, 2009.

    Article  Google Scholar 

  88. Kassam, A. B., M. Horowitz, Y. F. Chang, and D. Peters. Altered arterial homeostasis and cerebral aneurysms: a molecular epidemiology study. Neurosurgery 54:1450–1460, 2004.

    Article  PubMed  Google Scholar 

  89. Kasuya, H., T. Shimizu, K. Nakaya, A. Sasahara, T. Hori, and K. Takakura. Angles between A1 and A2 segments of the anterior cerebral artery visualized by three-dimensional computed tomographic angiography and association of anterior communicating artery aneurysms. Neurosurgery 45:89–93, 1999.

    Article  PubMed  CAS  Google Scholar 

  90. Kataoka, K., M. Taneda, T. Asai, A. Kinoshita, M. Ito, and R. Kuroda. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401, 1999.

    Article  PubMed  CAS  Google Scholar 

  91. Kayembe, K. N., M. Sasahara, and F. Hazama. Cerebral aneurysms and variations in the circle of Willis. Stroke 15:846–850, 1984

    Google Scholar 

  92. Kerber, C. W., S. G. Imbesi, and K. Knox. Flow dynamics in a lethal anterior communicating artery aneurysm. AJNR Am. J. Neuroradiol. 20:2000–2003, 1999.

    PubMed  CAS  Google Scholar 

  93. Kim, C., J. Cervós-Navarro, H. Kikuchi, N. Hashimoto, and F. Hazama. Alterations in cerebral vessels in experimental animals and their possible relationship to the development of aneurysms. Surg. Neurol. 38:331–337, 1992.

    Article  PubMed  CAS  Google Scholar 

  94. Kim, S. C., M. Singh, J. Huang, C. J. Prestigiacomo, C. J. Winfree, R. A. Solomon, and E. S. Connolly, Jr. Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41:642–666, 1997.

    PubMed  CAS  Google Scholar 

  95. Kojima, M., H. Handa, N. Hashimoto, C. Kim, and F. Hazama. Early changes of experimentally induced cerebral aneurysms in rats: scanning electron microscopic study. Stroke 17:835–841, 1986.

    Article  PubMed  CAS  Google Scholar 

  96. Krex, D., H. Schackert, and G. Shackert. Genesis of cerbral aneuryms—an update. Acta Neurochir. (Wien). 143:429–449, 2001.

    Article  CAS  Google Scholar 

  97. Krings, T., R. L. Piske, and P. L. Lasjaunias. Intracranial arterial aneurysm vasculopathies: targeting the outer vessel wall. Neuroradiology 47:931–937, 2005.

    Article  PubMed  Google Scholar 

  98. Krischek, B., and I. Inoue. The genetics of intracranial aneurysms. J. Hum. Genet. 51:587–594, 2006.

    Article  PubMed  Google Scholar 

  99. Kroon, M., and G. A. Holzapfel. A model for saccular cerebral aneurysm growth by collagen fibre remodelling. J. Theor. Biol. 247:775–787, 2007.

    Article  PubMed  CAS  Google Scholar 

  100. Kroon, M., and G. A. Holzapfel. Estimation of the distributions of anisotropic, elastic properties and wall stresses of saccular cerebral aneurysms by inverse analysis. Proc. R. Soc. A: Math. Phys. Eng. Sci. 464:807–825, 2008.

    Article  Google Scholar 

  101. Kulcsár, Z., A. Ugron, M. Marosfoi, Z. Berentei, G. Paál, and I. Szikora. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. AJNR Am. J. Neuroradiol. 32:587–594, 2011.

    Article  PubMed  Google Scholar 

  102. Lall, R. R., C. S. Eddleman, B. R. Bendok, and H. H. Batjer. Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg. Focus 26:E2, 2009.

    Article  PubMed  Google Scholar 

  103. Lasheras, J. C. The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39:293–319, 2007.

    Article  Google Scholar 

  104. Lauric, A., E. L. Miller, M. I. Baharoglu, and A. M. Malek. 3D shape analysis of intracranial aneurysms using the writhe number as a discriminant for rupture. Ann. Biomed. Eng. 39:1457–1469, 2011.

    Article  PubMed  Google Scholar 

  105. Lazzaro, M. A., B. Ouyang, and M. Chen. The role of circle of Willis anomalies in cerebral aneurysm rupture. J. Neurointerv. Surg. 4:22–26, 2012.

    Article  PubMed  Google Scholar 

  106. Lieber, B. B., and M. J. Gounis. The physics of endoluminal stenting in the treatment of cerebrovascular aneurysms. Neurol. Res. 24:S33–S42, 2002.

    Article  PubMed  Google Scholar 

  107. Lieber, B. B., A. P. Stancampiano, and A. K. Wakhloo. Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Ann. Biomed. Eng. 25:460–469, 1997.

    Article  PubMed  CAS  Google Scholar 

  108. Liepsch, D. W., H. J. Steiger, A. Poll, and H. J. Reulen. Hemodynamic stress in lateral saccular aneurysms. Biorheology 24:689–710, 1987.

    PubMed  CAS  Google Scholar 

  109. Longstreth, W. T., Jr., T. D. Koepsell, M. S. Yerby, and G. van Belle. Risk factors for subarachnoid hemorrhage. Stroke 16:377–385, 1985.

    Google Scholar 

  110. Low, M. K., K. Perktold, and R. Raunig. Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology 30:287–298, 1993.

    PubMed  CAS  Google Scholar 

  111. Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–273, 2004.

    Article  PubMed  Google Scholar 

  112. Macdonald, R. L. Editorial: on the persisting difficulty of making predictions, especially about the future. J. Neurosurg. 116:866–870, 2012.

    Article  PubMed  Google Scholar 

  113. MacDonald, D. J., H. M. Finlay, and P. B. Canham. Directional wall strength in saccular brain aneurysms from polarized light microscopy. Ann. Biomed. Eng. 28:533–542, 2000.

    Article  PubMed  CAS  Google Scholar 

  114. Macdonald, R. L. Dissecting the Complexities of Aneurysm Hemodynamics. World Neurosurg. Online before print, 2011.

  115. Mackenzie, J. M. The anatomy of aneurysm-bearing circles of Willis. Clin. Neuropathol. 10:187–189, 1991.

    PubMed  CAS  Google Scholar 

  116. Mackey, J., R. D. Brown, Jr., C. J. Moomaw, L. Sauerbeck, R. Hornung, D. Gandhi, D. Woo, D. Kleindorfer, M. L. Flaherty, I. Meissner, C. Anderson, E. S. Connolly, G. Rouleau, D. F. Kallmes, J. Torner, J. Huston, III, J. P. Broderick, and FIA and ISUIA Investigators. Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: differences in multiplicity and location. J. Neurosurg. 117:60–64, 2012.

  117. Mahmood, U. Science to practice: can an enzyme-sensitive MR contrast agent be used to image inflammation in aneurysms? Radiology 252:627–628, 2009.

    Article  PubMed  Google Scholar 

  118. Mantha, A., C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am. J. Neuroradiol. 27:1113–1118, 2006.

    PubMed  CAS  Google Scholar 

  119. Marzo, A., P. Singh, I. Larrabide, A. Radaelli, S. Coley, M. Gwilliam, I. D. Wilkinson, P. Lawford, P. Reymond, U. Patel, A. Frangi, and D. R. Hose. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann. Biomed. Eng. 39:884–896, 2011.

    Article  PubMed  Google Scholar 

  120. McDonald, C. A., and M. Korb. Intracranial aneurysms. Arch. Neurol. Psychiatry 42:298–328, 1939.

    Article  Google Scholar 

  121. Meng, H., Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz, and J. Kolega. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38:1924–1931, 2007.

    Article  PubMed  Google Scholar 

  122. Metcalfe, R. W. The promise of computational fluid dynamics as a tool for delineating therapeutic options in the treatment of aneurysms. AJNR Am. J. Neuroradiol. 24:553–554, 2003.

    PubMed  Google Scholar 

  123. Mitchell, P., D. Birchall, and A. D. Mendelow. Blood pressure, fatigue, and the pathogenesis of aneurysmal subarachnoid hemorrhage. Surg. Neurol. 66:574–580, 2006.

    Article  PubMed  Google Scholar 

  124. Moritake, K., H. Handa, A. Okumura, K. Hayashi, and H. Nimi. Stiffness of cerebral arteries—its role in the pathogenesis of cerebral aneurysms. Neurol. Med. Chir. (Tokyo). 14:47–53, 1974.

    Article  Google Scholar 

  125. Nader-Sepahi, A., M. Casimiro, J. Sen, and N. D. Kitchen. Is aspect ratio a reliable predictor of intracranial aneurysm rupture? Neurosurgery 54:1343–1347, 2004.

    Article  PubMed  Google Scholar 

  126. Nahed, B. V., M. Bydon, A. K. Ozturk, K. Bilguvar, F. Bayrakli, and M. Gunel. Genetics of intracranial aneurysms. Neurosurgery 60:213–225, 2007.

    Article  PubMed  Google Scholar 

  127. Nakatani, H., N. Hashimoto, Y. Kang, N. Yamazoe, H. Kikuchi, S. Yamaguchi, and H. Niimi. Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats. J. Neurosurg. 74:258–262, 1991.

    Article  PubMed  CAS  Google Scholar 

  128. Nüssel, F., H. Wegmüller, and P. Huber. Morphological and haemodynamic aspects of cerebral aneurysms. Acta Neurochir. (Wien). 120:1–6, 1993.

    Article  Google Scholar 

  129. Ohshima, T., S. Miyachi, K. Hattori, I. Takahashi, K. Ishii, T. Izumi, and J. Yoshida. Risk of aneurysmal rupture: the importance of neck orifice positioning-assessment using computational flow simulation. Neurosurgery 62:767–773, 2008.

    Article  PubMed  Google Scholar 

  130. Ozdamar, N., and G. Celebi. Pressure distribution on the wall of experimental aneurysms. Acta Neurochir. (Wien). 45:27–34, 1978.

    Article  CAS  Google Scholar 

  131. Paal, G., A. Ugron, I. Szikora, and I. Bojtar. Flow in simplified and real models of intracranial aneurysms. Int. J. Heat Fluid Flow 28:653–664, 2007.

    Article  Google Scholar 

  132. Passerini, T., L. M. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi, and A. Veneziani. An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms. Cardiovasc. Eng. Technol. 3:26–40, 2012

    Google Scholar 

  133. Penn, D. L., R. J. Komotar, and E. Sander Connolly. Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. J. Clin. Neurosci. 18:1435–1438, 2011.

    Article  PubMed  Google Scholar 

  134. Perktold, K., K. Gruber, T. Kenner, and H. Florian. Calculation of pulsatile flow and particle paths in an aneurysm-model. Basic Res. Cardiol. 79:253–261, 1984.

    Article  PubMed  CAS  Google Scholar 

  135. Perktold, K., T. Kenner, D. Hilbert, B. Spork, and H. Florian. Numerical blood flow analysis: arterial bifurcation with a saccular aneurysm. Basic Res. Cardiol. 83:24–31, 1988.

    Article  PubMed  CAS  Google Scholar 

  136. Perktold, K., R. Peter, and M. Resch. Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26:1011–1030, 1989.

    PubMed  CAS  Google Scholar 

  137. Peters, D. G., A. B. Kassam, E. Feingold, E. Heidrich-O’Hare, H. Yonas, R. E. Ferrell, and A. Brufsky. Molecular anatomy of an intracranial aneurysm: coordinated expression of genes involved in wound healing and tissue remodeling. Stroke 32:1036–1042, 2001.

    Article  PubMed  CAS  Google Scholar 

  138. Piccinelli, M., D. A. Steinman, Y. Hoi, F. Tong, A. Veneziani, and L. Antiga. Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs. Ann. Biomed. Eng. Online before print, 2012.

  139. Piccinelli, M., A. Veneziani, D. A. Steinman, A. Remuzzi, and L. Antiga. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging 28:1141–1155, 2009.

    Article  PubMed  Google Scholar 

  140. Qiao, Y., D. A. Steinman, Q. Qin, M. Etesami, M. Schär, B. C. Astor, and B. A. Wasserman. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J. Magn. Reson. Imaging 34:22–30, 2011.

    Article  PubMed  Google Scholar 

  141. Raghavan, M. L., B. Ma, and R. E. Harbaugh. Quantified aneurysm shape and rupture risk. J. Neurosurg. 102:355–362, 2005.

    Article  PubMed  Google Scholar 

  142. Rahman, M., J. Smietana, E. Hauck, B. Hoh, N. Hopkins, A. Siddiqui, E. I. Levy, H. Meng, and J. Mocco. Size ratio correlates with intracranial aneurysm rupture status: a prospective study. Stroke 41:916–920, 2010.

    Article  PubMed  Google Scholar 

  143. Ramalho, S., A. Moura, A. M. Gambaruto, and A. Sequeira. Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm. Int. J. Numer. Methods Biomed. Eng. 28:697–713, 2012.

    Article  Google Scholar 

  144. Rayz, V. L., L. Boussel, L. Ge, J. R. Leach, A. J. Martin, M. T. Lawton, C. McCulloch, and D. Saloner. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 38:3058–3069, 2010.

    Article  PubMed  CAS  Google Scholar 

  145. Richardson, J. C., and H. H. Hyland. Intracranial aneurysms: a clinical and pathological study of subarachnoid and intracerebral haemorrhage caused berry aneurysms. Medicine 20:1–83, 1941.

    Article  Google Scholar 

  146. Rinkel, G. J., M. Djibuti, A. Algra, and J. van Gijn. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256, 1998.

    Article  PubMed  CAS  Google Scholar 

  147. Roach, M. R. A model study of why some intracranial aneurysms thrombose but others rupture. Stroke 9:583–587, 1978.

    Article  PubMed  CAS  Google Scholar 

  148. Roach, M. R., S. Scott, and G. G. Ferguson. The hemodynamic importance of the geometry of bifurcations in the circle of Willis (glass model studies). Stroke 3:255–267, 1972.

    Article  PubMed  CAS  Google Scholar 

  149. Robertson, A. M., and P. N. Watton. Computational fluid dynamics in aneurysm research: critical reflections, future directions. AJNR Am. J. Neuroradiol. 33:992–995, 2012.

    Article  PubMed  CAS  Google Scholar 

  150. Ruigrok, Y. M., G. J. Rinkel, and C. Wijmenga. Genetics of intracranial aneurysms. Lancet Neurol. 4:179–189, 2005.

    PubMed  CAS  Google Scholar 

  151. Ruigrok, Y. M., G. J. Rinkel, R. van’t Slot, M. Wolfs, S. Tang, and C. Wijmenga. Evidence in favor of the contribution of genes involved in the maintenance of the extracellular matrix of the arterial wall to the development of intracranial aneurysms. Hum. Mol. Genet. 15:3361–3368, 2006

    Google Scholar 

  152. Ruiz-Sandoval, J. L., C. Cantú, E. Chiquete, C. León-Jiménez, A. Arauz, L. M. Murillo-Bonilla, J. Villarreal-Careaga, F. Barinagarrementería, and RENAMEVASC Investigators. Aneurysmal subarachnoid hemorrhage in a Mexican multicenter registry of cerebrovascular disease: the RENAMEVASC study. J. Stroke Cerebrovasc. Dis. 48–55:48–55, 2009

    Google Scholar 

  153. Sadatomo, T., K. Yuki, K. Migita, E. Taniguchi, Y. Kodama, and K. Kurisu. Morphological differences between ruptured and unruptured cases in middle cerebral artery aneurysms. Neurosurgery 62:602–609, 2008.

    Article  PubMed  Google Scholar 

  154. San Millán Ruíz, D., H. Yilmaz, A. R. Dehdashti, A. Alimenti, N. de Tribolet, and D. A. Rüfenacht. The perianeurysmal environment: influence on saccular aneurysm shape and rupture. AJNR Am. J. Neuroradiol. 27:504–512, 2006.

  155. Sato, K., Y. Imai, T. Ishikawa, N. Matsuki, and T. Yamaguchi. The importance of parent artery geometry in intra-aneurysmal hemodynamics. Med. Eng. Phys. 30:774–782, 2008.

    Article  PubMed  Google Scholar 

  156. Schievink, W. I. Intracranial aneurysms. N. Engl. J. Med. 336:28–40, 1997.

    Article  PubMed  CAS  Google Scholar 

  157. Sekhar, L. N., R. J. Sclabassi, M. Sun, H. B. Blue, and J. F. Wasserman. Intra-aneurysmal pressure measurements in experimental saccular aneurysms in dogs. Stroke 19:352–356, 1988.

    Article  PubMed  CAS  Google Scholar 

  158. Sforza, D. M., C. M. Putman, and J. R. Cebral. Hemodynamics of Cerebral Aneurysms. Annu. Rev. Fluid Mech. 41:91–107, 2009.

    Article  PubMed  Google Scholar 

  159. Sforza, D. M., C. M. Putman, and J. R. Cebral. Computational fluid dynamics in brain aneurysms. Int. J. Numer. Methods Biomed. Eng. 28:801–808, 2012.

    Article  Google Scholar 

  160. Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42:550–554, 2009.

    Article  PubMed  Google Scholar 

  161. Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505, 2004.

    Article  PubMed  Google Scholar 

  162. Shojima, M., M. Oshima, K. Takagi, R. Torii, K. Nagata, I. Shirouzu, A. Morita, and T. Kirino. Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938, 2005.

    Article  PubMed  Google Scholar 

  163. Stehbens, W. E. Etiology of intracranial berry aneurysms. J. Neurosurg. 70:823–831, 1989.

    Article  PubMed  CAS  Google Scholar 

  164. Stehbens, W. E., B. J. Martin, and B. Delahunt. Light and scanning electron microscopic changes observed in experimental arterial forks of rabbits. Int. J. Exp. Pathol. 72:183–193, 1991.

    PubMed  CAS  Google Scholar 

  165. Stehbens, W. E. Aneurysms and anatomical variation of cerebral arteries. Arch Pathol. 75, 1963.

  166. Steiger, H. J. Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir. Suppl. (Wien). 48:1–57, 1990.

    CAS  Google Scholar 

  167. Steiger, H. J., R. Aaslid, S. Keller, and H. J. Reulen. Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 5:41–46, 1989.

    Article  PubMed  CAS  Google Scholar 

  168. Steiger, H. J., A. Poll, D. Liepsch, and H. J. Reulen. Basic flow structure in saccular aneurysms: a flow visualization study. Heart Vessels 3:55–65, 1987.

    Article  PubMed  CAS  Google Scholar 

  169. Steiger, H. J., A. Poll, D. Liepsch, and H. J. Reulen. Haemodynamic stress in lateral saccular aneurysms. An experimental study. Acta Neurochir. (Wien) 86:98–105, 1987.

    Article  CAS  Google Scholar 

  170. Steinman, D. A. Assumptions in modelling of large artery hemodynamics. In: Modelling of Physiological Flows, edited by D. Ambrosi, A. Quarteroni and G. Rozza, Springer, 2011, pp. 1–8.

  171. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24:559–566, 2003.

    PubMed  Google Scholar 

  172. Stewart, S. F. C., E. G. Paterson, G. W. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, M. R. Berman, M. R. Myers, and R. A. Malinauskas. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 3:139–160, 2012.

    Article  Google Scholar 

  173. Stewart, R. W. Turbulence. In: Illustrated Experiments in Fluid Mechanics: The NCFMF Book of Film Notes, edited by N.C.f.F.M. Films. Cambridge, MA: MIT Press, 1972.

  174. Strother, C. M. In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 37:159–161, 1995.

    Article  PubMed  CAS  Google Scholar 

  175. Strother, C. M., V. B. Graves, and A. Rappe. Aneurysm hemodynamics: an experimental study. AJNR Am. J. Neuroradiol. 13:1089–1095, 1992.

    PubMed  CAS  Google Scholar 

  176. Suzuki, J., and H. Ohara. Clinicopathological study of cerebral aneurysms. Origin, rupture, repair, and growth. J. Neurosurg. 48:505–514, 1978.

    Article  PubMed  CAS  Google Scholar 

  177. Szikora, I., G. Paal, A. Ugron, F. Nasztanovics, M. Marosfoi, Z. Berentei, Z. Kulcsar, W. Lee, I. Bojtar, and I. Nyary. Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study. Neuroradiology 50:411–421, 2008.

    Article  PubMed  Google Scholar 

  178. Takao, H., Y. Murayama, S. Otsuka, Y. Qian, A. Mohamed, S. Masuda, M. Yamamoto, and T. Abe. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 43:1436–1439, 2012.

    Article  PubMed  Google Scholar 

  179. Tanoue, T., S. Tateshima, J. P. Villablanca, F. Viñuela, and K. Tanishita. Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am. J. Neuroradiol. 32:1732–1737, 2011.

    Article  PubMed  CAS  Google Scholar 

  180. Tateshima, S., A. Chien, J. Sayre, J. Cebral, and F. Viñuela. The effect of aneurysm geometry on the intra-aneurysmal flow condition. Neuroradiology 52:1135–1141, 2010.

    Article  PubMed  Google Scholar 

  181. Tateshima, S., Y. Murayama, J. P. Villablanca, T. Morino, K. Nomura, K. Tanishita, and F. Viñuela. In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 34:187–192, 2003.

    Article  PubMed  Google Scholar 

  182. Tateshima, S., F. Viñuela, J. P. Villablanca, Y. Murayama, T. Morino, K. Nomura, and K. Tanishita. Three-dimensional blood flow analysis in a wide-necked internal carotid artery-ophthalmic artery aneurysm. J. Neurosurg. 99:526–533, 2003.

    Google Scholar 

  183. Tateshima, S., K. Tanishita, H. Omura, J. P. Villablanca, and F. Vinuela. Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. AJNR Am. J. Neuroradiol. 28:622–627, 2007.

    PubMed  CAS  Google Scholar 

  184. Tezduyar, T. E., K. Takizawa, T. Brummer, and P. R. Chen. Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. International J. Numer. Methods Biomed. Eng. 27:1665–1710, 2011.

  185. Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. Comput. Methods Appl. Mech. Eng. 198:3613–3621, 2009.

    Article  Google Scholar 

  186. Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms. Int. J. Numer. Methods Biomed Eng. 26:336–347, 2010.

    Google Scholar 

  187. Toth, B. K., F. Nasztanovics, and I. Bojtar. Laboratory tests for strength parameters of brain aneurysms. Acta Bioeng. Biomech. 9:3–7, 2007.

    Google Scholar 

  188. Tremmel, M., S. Dhar, E. I. Levy, J. Mocco, and H. Meng. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery 64:622–630, 2009.

    Article  PubMed  Google Scholar 

  189. Tulamo, R., J. Frösen, J. Hernesniemi, and M. Niemelä. Inflammatory changes in the aneurysm wall: a review. J. Neurointerv. Surg. 2:120–130, 2010.

    Article  PubMed  Google Scholar 

  190. Turner, C. L., S. Tebbs, P. Smielewski, and P. J. Kirkpatrick. The influence of hemodynamic stress factors on intracranial aneurysm formation. J. Neurosurg. 95:764–770, 2001.

    Article  PubMed  CAS  Google Scholar 

  191. Ujiie, H., D. W. Liepsch, M. Goetz, R. Yamaguchi, H. Yonetani, and K. Takakura. Hemodynamic study of the anterior communicating artery. Stroke 27:2086–2093, 1996.

    Article  PubMed  CAS  Google Scholar 

  192. Ujiie, H., H. Tachibana, O. Hiramatsu, A. L. Hazel, T. Matsumoto, Y. Ogasawara, H. Nakajima, T. Hori, K. Takakura, and F. Kajiya. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:119–129, 1999.

    Article  PubMed  CAS  Google Scholar 

  193. Ujiie, H., Y. Tamano, K. Sasaki, and T. Hori. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48:495–502, 2001.

    Article  PubMed  CAS  Google Scholar 

  194. Valencia, A. A., A. M. Guzma’n, E. A. Finol, and C. H. Amon. Blood flow dynamics in saccular aneurysm models of the basilar artery. J. Biomech. Eng. 128:516–526, 2006.

    Article  PubMed  Google Scholar 

  195. Valencia, A., D. Ledermann, R. Rivera, E. Bravo, and M. Galvez. Blood flow dynamics and fluid-structure interaction in patient-specific bifurcating cerebral aneurysms. Int. J. Numer. Methods Fluids 58:1081–1100, 2008.

    Article  Google Scholar 

  196. Valen-Sendstad, K., K.-A. Mardal, M. Mortensen, B. A. P. Reif, and H. P. Langtangen. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J. Biomech. 44:2826–2832, 2011.

    Google Scholar 

  197. van Dyke, M. An Album of Fluid Motion. Stanford, CA: Parabolic Press, 1982.

    Google Scholar 

  198. van Ooij, P., A. Guédon, C. Poelma, J. Schneiders, M. C. Rutten, H. A. Marquering, C. B. Majoie, E. VanBavel, and A. J. Nederveen. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed. 25:14–26, 2012.

    Article  PubMed  Google Scholar 

  199. van Ooij, P., J. J. Zwanenburg, F. Visser, C. B. Majoie, E. Vanbavel, J. Hendrikse, and A. J. Nederveen. Quantification and visualization of flow in the Circle of Willis: time-resolved three-dimensional phase contrast MRI at 7 T compared with 3 T. Magn. Reson. Med. Online before print, 2012.

  200. Venkatesh, B., Q. Shen, and J. Lipman. Continuous measurement of cerebral blood flow velocity using transcranial Doppler reveals significant moment-to-moment variability of data in healthy volunteers and in patients with subarachnoid hemorrhage. Crit. Care Med. 30:563–569, 2002.

    Article  PubMed  Google Scholar 

  201. Venugopal, P., D. Valentino, H. Schmitt, J. P. Villablanca, F. Viñuela, and G. Duckwiler. Sensitivity of patient-specific numerical simulation of cerebal aneurysm hemodynamics to inflow boundary conditions. J. Neurosurg. 106:1051–1060, 2007.

    Article  PubMed  Google Scholar 

  202. Vignon-Clementel, I. E., C. A. Figuero, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13:625–640, 2010.

    Article  CAS  Google Scholar 

  203. Watton, P. N., A. Selimovic, N. B. Raberger, P. Huang, G. A. Holzapfel, and Y. Ventikos. Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomech. Model. Mechanobiol. 10:109–132, 2011.

    Article  PubMed  CAS  Google Scholar 

  204. Weir, B. Unruptured intracranial aneurysms: a review. J. Neurosurg. 96:3–42, 2002.

    Article  PubMed  Google Scholar 

  205. Weller, R. O. Subarachnoid haemorrhage and myths about saccular aneurysms. J. Clin. Pathol. 48:1078–1081, 1995.

    Article  PubMed  CAS  Google Scholar 

  206. Wiebers, D. O. Unruptured intracranial aneurysms: natural history and clinical management. Update on the international study of unruptured intracranial aneurysms. Neuroimaging Clin. N. Am. 16:383–390, 2006.

    Article  PubMed  Google Scholar 

  207. Wiebers, D. O., J. P. Whisnant, T. M. Sundt, Jr., and W. M. O’Fallon. The significance of unruptured intracranial saccular aneurysms. J. Neurosurg. 66:23–29, 1987.

    Article  PubMed  CAS  Google Scholar 

  208. Wilson, G., H. E. Riggs, and C. Rupp. The pathologic anatomy of ruptured cerebral aneurysms. J. Neurosurg. 11:128–134, 1954.

    Article  PubMed  CAS  Google Scholar 

  209. Wong, G. K., and W. S. Poon. Current status of computational fluid dynamics for cerebral aneurysms: the clinician’s perspective. J. Clin. Neurosci. 18:1285–1288, 2011.

    Article  PubMed  Google Scholar 

  210. Xiang, J., M. Tremmel, J. Kolega, E. I. Levy, S. K. Natarajan, and H. Meng. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. J. Neurointerv. Surg. 4:351–357, 2011.

    Article  PubMed  Google Scholar 

  211. Yamaguchi, R., H. Ujiie, S. Haida, N. Nakazawa, and T. Hori. Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery. Heart Vessels 23:60–66, 2008.

    Article  PubMed  Google Scholar 

  212. Yasuda, R., C. M. Strother, W. Taki, K. Shinki, K. Royalty, K. Pulfer, and C. Karmonik. Aneurysm volume-to-ostium area ratio: a parameter useful for discriminating the rupture status of intracranial aneurysms. Neurosurgery 68:310–317, 2011.

    Article  PubMed  Google Scholar 

  213. Zhang, B., K. Fugleholm, L. B. Day, S. Ye, R. O. Weller, and I. N. Day. Molecular pathogenesis of subarachnoid haemorrhage. Int. J. Biochem. Cell Biol. 35:1341–1360, 2003.

    Article  PubMed  CAS  Google Scholar 

  214. Zhao, X., M. L. Raghavan, and J. Lu. Characterizing heterogeneous properties of cerebral aneurysms with unknown stress-free geometry: a precursor to in vivo identification. J. Biomech. Eng. 133:051008, 2011.

    Article  PubMed  Google Scholar 

  215. Zhuang, Y. J., T. M. Singh, C. K. Zarins, and H. Masuda. Sequential increases and decreases in blood flow stimulates progressive intimal thickening. Eur. J. Vasc. Endovasc. Surg. 16:301–310, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01-NS045753 to B.B.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch B. Lieber.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadasivan, C., Fiorella, D.J., Woo, H.H. et al. Physical Factors Effecting Cerebral Aneurysm Pathophysiology. Ann Biomed Eng 41, 1347–1365 (2013). https://doi.org/10.1007/s10439-013-0800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0800-z

Keywords

Navigation