Skip to main content

Advertisement

Log in

The Glymphatic System: A Beginner’s Guide

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The glymphatic system is a recently discovered macroscopic waste clearance system that utilizes a unique system of perivascular tunnels, formed by astroglial cells, to promote efficient elimination of soluble proteins and metabolites from the central nervous system. Besides waste elimination, the glymphatic system also facilitates  brain-wide distribution of several compounds, including glucose, lipids, amino acids, growth factors, and neuromodulators. Intriguingly, the glymphatic system function mainly during sleep and is largely disengaged during wakefulness. The biological need for sleep across all species may therefore reflect that the brain must enter a state of activity that enables elimination of potentially neurotoxic waste products, including β-amyloid. Since the concept of the glymphatic system is relatively new, we will here review its basic structural elements, organization, regulation, and functions. We will also discuss recent studies indicating that glymphatic function is suppressed in various diseases and that failure of glymphatic function in turn might contribute to pathology in neurodegenerative disorders, traumatic brain injury and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liao S, Padera TP (2013) Lymphatic function and immune regulation in health and disease. Lymphat Res Biol 11:136–143. doi:10.1089/lrb.2013.0012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wang Z, Ying Z, Bosy-Westphal A et al (2012) Evaluation of specific metabolic rates of major organs and tissues: comparison between nonobese and obese women. Obesity 20:95–100. doi:10.1038/oby.2011.256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Weed LH (1917) An anatomical consideration of the cerebro-spinal fluid. Anat Rec 12:461–496. doi:10.1002/ar.1090120405

    Article  Google Scholar 

  4. Johanson CE, Duncan JA, Klinge PM et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10. doi:10.1186/1743-8454-5-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892. doi:10.1152/physrev.00004.2013

    Article  CAS  PubMed  Google Scholar 

  6. Thrane AS, Rangroo Thrane V, Nedergaard M (2014) Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci 37:620–628. doi:10.1016/j.tins.2014.08.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 56:47–53. doi:10.1016/0165-3806(90)90163-S

    Article  CAS  PubMed  Google Scholar 

  8. Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132:5329–5339. doi:10.1242/dev.02153

    Article  CAS  PubMed  Google Scholar 

  9. Brown P, Davies S, Speake T, Millar I (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970. doi:10.1016/j.neuroscience.2004.07.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ames A, Higashi K, Nesbett FB (1965) Effects of Pco2 acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J Physiol 181:516–524

    Article  PubMed Central  PubMed  Google Scholar 

  11. Johanson CE (2008) Choroid plexus–Cerebrospinal fluid circulatory dynamics: impact on brain growth, metabolism, and repair. Neurosci, Med

    Google Scholar 

  12. Davson H, Segal MB (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209:131–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Segal MB, Burgess AM (1974) A combined physiological and morphological study of the secretory process in the rabbit choroid plexus. J Cell Sci 14:339–350

    CAS  PubMed  Google Scholar 

  14. Christensen HL, Nguyen AT, Pedersen FD, Damkier HH (2013) Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol 4:304. doi:10.3389/fphys.2013.00304

    PubMed Central  PubMed  Google Scholar 

  15. Jacobs S, Ruusuvuori E, Sipilä ST et al (2008) Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci USA 105:311–316. doi:10.1073/pnas.0705487105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Damkier HH, Praetorius J (2012) Genetic ablation of Slc4a10 alters the expression pattern of transporters involved in solute movement in the mouse choroid plexus. Am J Physiol Cell Physiol 302:C1452–C1459. doi:10.1152/ajpcell.00285.2011

    Article  CAS  PubMed  Google Scholar 

  17. Saito Y, Wright EM (1983) Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J Physiol 336:635–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mayer SE, Sanders-Bush E (1993) Sodium-dependent antiporters in choroid plexus epithelial cultures from rabbit. J Neurochem 60:1308–1316

    Article  CAS  PubMed  Google Scholar 

  19. Deng QS, Johanson CE (1989) Stilbenes inhibit exchange of chloride between blood, choroid plexus and cerebrospinal fluid. Brain Res 501:183–187. doi:10.1016/0006-8993(89)91041-X

    Article  CAS  PubMed  Google Scholar 

  20. Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291:C59–C67. doi:10.1152/ajpcell.00433.2005

    Article  CAS  PubMed  Google Scholar 

  21. Praetorius J (2007) Water and solute secretion by the choroid plexus. Pflugers Arch 454:1–18. doi:10.1007/s00424-006-0170-6

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279. doi:10.1073/pnas.90.15.7275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Damkier HH, Brown PD, Praetorius J (2010) Epithelial pathways in choroid plexus electrolyte transport. Physiology (Bethesda) 25:239–249. doi:10.1152/physiol.00011.2010

    Article  CAS  Google Scholar 

  24. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277. doi:10.1038/nrn3468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oshio K, Song Y, Verkman AS, Manley GT (2003) Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir 86(Suppl):525–528

    CAS  Google Scholar 

  26. Oshio K, Watanabe H, Song Y et al (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19:76–78. doi:10.1096/fj.04-1711fje

    CAS  PubMed  Google Scholar 

  27. Husted RF, Reed DJ (1976) Regulation of cerebrospinal fluid potassium by the cat choroid plexus. J Physiol 259:213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Silverberg GD, Huhn S, Jaffe RA et al (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97:1271–1275. doi:10.3171/jns.2002.97.6.1271

    Article  PubMed  Google Scholar 

  29. Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1:245–266. doi:10.1038/jcbfm.1981.30

    Article  CAS  PubMed  Google Scholar 

  30. Szentistványi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844

    PubMed  Google Scholar 

  31. Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2. doi:10.1186/1743-8454-1-2

    Article  PubMed Central  PubMed  Google Scholar 

  32. Koh L, Zakharov A, Johnston M (2005) Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2:6. doi:10.1186/1743-8454-2-6

    Article  PubMed Central  PubMed  Google Scholar 

  33. Biceroglu H, Albayram S, Ogullar S et al (2012) Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine 16:394–401. doi:10.3171/2011.12.SPINE11108

    Article  PubMed  Google Scholar 

  34. Murtha LA, Yang Q, Parsons MW et al (2014) Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 11:12. doi:10.1186/2045-8118-11-12

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kimelberg HK (2004) Water homeostasis in the brain: basic concepts. Neuroscience 129:851–860. doi:10.1016/j.neuroscience.2004.07.033

    Article  CAS  PubMed  Google Scholar 

  36. Redzic Z (2011) Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3. doi:10.1186/2045-8118-8-3

    Article  PubMed Central  PubMed  Google Scholar 

  37. Oresković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64:241–262. doi:10.1016/j.brainresrev.2010.04.006

    Article  PubMed  Google Scholar 

  38. Sathyanesan M, Girgenti MJ, Banasr M et al (2012) A molecular characterization of the choroid plexus and stress-induced gene regulation. Transl Psychiatry 2:e139. doi:10.1038/tp.2012.64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bulat M, Lupret V, Orehković D, Klarica M (2008) Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol 32(Suppl 1):43–50

    PubMed  Google Scholar 

  40. Orešković D, Klarica M (2014) A new look at cerebrospinal fluid movement. Fluids Barriers CNS 11:16. doi:10.1186/2045-8118-11-16

    Article  PubMed Central  PubMed  Google Scholar 

  41. Buishas J, Gould IG, Linninger AA (2014) A computational model of cerebrospinal fluid production and reabsorption driven by starling forces. Croat Med J 55:481–497. doi:10.3325/cmj.2014.55.481

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kulik T, Kusano Y, Aronhime S (2008) Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 55:281–288. doi:10.1016/j.neuropharm.2008.04.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Prince E, Ahn S (2013) Basic vascular neuroanatomy of the brain and spine: what the general interventional radiologist needs to know. Semin Intervent Radiol 30:234–239. doi:10.1055/s-0033-1353475

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738. doi:10.1038/nrn3114

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow–Robin) spaces in the human cerebrum. J Anat 170:111–123

    PubMed Central  CAS  PubMed  Google Scholar 

  46. del Zoppo GJ, Moskowitz M, Nedergaard M (2015) The neurovascular unit and responses to ischemia. In: Grotta J, Albers G, Broderick J, Kasner S, Lo E, Medelow AD, Sacco R, Wong L (eds) Stroke: pathophysiology, diagnosis, and management, 6th Edn. Elsevier, Philadelphia.

  47. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33:579–589. doi:10.1016/j.it.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  48. Schlesinger B (1939) The venous drainage of the brain, with special reference to the galenic system. Brain 62:274–291. doi:10.1093/brain/62.3.274

    Article  Google Scholar 

  49. Cipolla M (2010) Anatomy and ultrastructure. Cereb, Circ

    Google Scholar 

  50. Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. doi: 10.1126/scitranslmed.3003748

  51. Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44:S93–S95. doi:10.1161/STROKEAHA.112.678698

    Article  PubMed Central  PubMed  Google Scholar 

  52. Bradbury M, Cserr H (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston M (ed) Experimental Biology of the lymphatic circulation. Elsevier, New York, pp 355–394

    Google Scholar 

  53. Weller RO, Subash M, Preston SD et al (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266. doi:10.1111/j.1750-3639.2008.00133.x

    Article  CAS  PubMed  Google Scholar 

  54. Carare RO, Bernardes-Silva M, Newman TA et al (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144. doi:10.1111/j.1365-2990.2007.00926.x

    Article  CAS  PubMed  Google Scholar 

  55. Hawkes CA, Härtig W, Kacza J et al (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443. doi:10.1007/s00401-011-0801-7

    Article  PubMed  Google Scholar 

  56. Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arter Thromb Vasc Biol 24:806–815. doi:10.1161/01.ATV.0000120374.59826.1b

    Article  CAS  Google Scholar 

  57. Björkhem I, Lütjohann D, Diczfalusy U et al (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600

    PubMed  Google Scholar 

  58. Lütjohann D, Breuer O, Ahlborg G et al (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 93:9799–9804. doi:10.1073/pnas.93.18.9799

    Article  PubMed Central  PubMed  Google Scholar 

  59. Fagan AM, Holtzman DM, Munson G et al (1999) Unique lipoproteins secreted by primary astrocytes from wild type, apoE (−/−), and human apoE transgenic mice. J Biol Chem 274:30001–30007. doi:10.1074/jbc.274.42.30001

    Article  CAS  PubMed  Google Scholar 

  60. Deane R, Sagare A, Hamm K et al (2008) apoE isoform—specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest 118:4002–4013. doi:10.1172/JCI36663DS1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981. doi:10.1073/pnas.90.5.1977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. doi:10.1126/science.8346443

    Article  CAS  PubMed  Google Scholar 

  63. Boyles JK, Pitas RE, Wilson E et al (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76:1501–1513. doi:10.1172/JCI112130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Xu Q, Bernardo A, Walker D et al (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26:4985–4994. doi:10.1523/JNEUROSCI.5476-05.2006

    Article  CAS  PubMed  Google Scholar 

  65. Rangroo Thrane V, Thrane AS, Plog BA et al (2013) Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 3:2582. doi:10.1038/srep02582

    PubMed  Google Scholar 

  66. Klose U, Strik C, Kiefer C, Grodd W (2000) Detection of a relation between respiration and CSF pulsation with an echoplanar technique. J Magn Reson Imaging 11:438–444. doi:10.1002/(SICI)1522-2586(200004)11:4<438:AID-JMRI12>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  67. Yamada S, Miyazaki M, Yamashita Y et al (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10:36. doi:10.1186/2045-8118-10-36

    Article  PubMed Central  PubMed  Google Scholar 

  68. Murfee WL, Skalak TC, Peirce SM (2005) Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation 12:151–160. doi:10.1080/10739680590904955

    Article  CAS  PubMed  Google Scholar 

  69. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157. doi:10.1242/dev.004895

    Article  CAS  PubMed  Google Scholar 

  70. Iliff JJ, Lee H, Yu M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309. doi:10.1172/JCI67677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Iliff JJ, Wang M, Zeppenfeld DM et al (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199. doi:10.1523/JNEUROSCI.1592-13.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Schroth G, Klose U (1992) Cerebrospinal fluid flow—I. Physiology of cardiac-related pulsation. Neuroradiology 35:1–9. doi:10.1007/BF00588270

    Article  CAS  PubMed  Google Scholar 

  73. Stoodley MA, Brown SA, Brown CJ, Jones NR (1997) Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg 86:686–693. doi:10.3171/jns.1997.86.4.0686

    Article  CAS  PubMed  Google Scholar 

  74. Bilston LE, Stoodley MA, Fletcher DF (2010) The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development. J Neurosurg 112:808–813. doi:10.3171/2009.5.JNS08945

    Article  PubMed  Google Scholar 

  75. Buzsáki G (1998) Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 7(Suppl 1):17–23. doi:10.1046/j.1365-2869.7.s1.3.x

    Article  PubMed  Google Scholar 

  76. Fishbein W, Gutwein BM (1977) Paradoxical sleep and memory storage processes. Behav Biol 19:425–464. doi:10.1016/S0091-6773(77)91903-4

    Article  CAS  PubMed  Google Scholar 

  77. Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81. doi:10.1038/nature02663

    Article  CAS  PubMed  Google Scholar 

  78. Tucker MA, Hirota Y, Wamsley EJ et al (2006) A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem 86:241–247. doi:10.1016/j.nlm.2006.03.005

    Article  PubMed  Google Scholar 

  79. Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264–1271. doi:10.1038/nature04285

    Article  CAS  PubMed  Google Scholar 

  80. Madsen PL, Schmidt JF, Wildschiødtz G et al (1991) Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol 70:2597–2601

    CAS  PubMed  Google Scholar 

  81. Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. doi:10.1126/science.1241224

    Article  CAS  PubMed  Google Scholar 

  82. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84. doi:10.1016/S0165-0173(03)00143-7

    Article  PubMed  Google Scholar 

  83. O’Donnell J, Zeppenfeld D, McConnell E et al (2012) Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 37:2496–2512. doi:10.1007/s11064-012-0818-x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Rev 17:109–138. doi:10.1016/0165-0173(92)90011-A

    Article  CAS  PubMed  Google Scholar 

  85. Kress BT, Iliff JJ, Xia M et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. doi:10.1002/ana.24271

    PubMed Central  PubMed  Google Scholar 

  86. Sabbatini M, Barili P, Bronzetti E et al (1999) Age-related changes of glial fibrillary acidic protein immunoreactive astrocytes in the rat cerebellar cortex. Mech Ageing Dev 108:165–172

    Article  CAS  PubMed  Google Scholar 

  87. Deane R, Zlokovic BV (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 4:191–197. doi:10.2174/156720507780362245

    Article  CAS  PubMed  Google Scholar 

  88. Chen RL, Kassem NA, Redzic ZB et al (2009) Age-related changes in choroid plexus and blood-cerebrospinal fluid barrier function in the sheep. Exp Gerontol 44:289–296. doi:10.1016/j.exger.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  89. Fleischman D, Berdahl JP, Zaydlarova J et al (2012) Cerebrospinal fluid pressure decreases with older age. PLoS ONE 7:e52664. doi:10.1371/journal.pone.0052664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arter Thromb Vasc Biol 25:932–943. doi:10.1161/01.ATV.0000160548.78317.29

    Article  CAS  Google Scholar 

  91. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. doi:10.1038/nm1066

    Article  PubMed  CAS  Google Scholar 

  92. Takalo M, Salminen A, Soininen H et al (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2:1–14

    PubMed Central  PubMed  Google Scholar 

  93. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852. doi:10.1074/jbc.M808759200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Grad LI, Yerbury JJ, Turner BJ et al (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111:3620–3625. doi:10.1073/pnas.1312245111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi:10.1038/nm1747

    Article  CAS  PubMed  Google Scholar 

  96. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  97. Yamada K, Cirrito JR, Stewart FR et al (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31:13110–13117. doi:10.1523/JNEUROSCI.2569-11.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818. doi:10.1038/nn.2583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Bero AW, Yan P, Roh JH et al (2011) Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci 14:750–756. doi:10.1038/nn.2801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Skaper SD, Evans NA, Rosin C et al (2009) Oligodendrocytes are a novel source of amyloid peptide generation. Neurochem Res 34:2243–2250. doi:10.1007/s11064-009-0022-9

    Article  CAS  PubMed  Google Scholar 

  101. Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331. doi:10.1074/jbc.M110.209296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540. doi:10.1002/ana.22615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Bateman RJ, Munsell LY, Morris JC et al (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12:856–861. doi:10.1038/nm1438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a011452

    PubMed Central  PubMed  Google Scholar 

  105. Maurizi CP (1991) Recirculation of cerebrospinal fluid through the tela choroidae is why high levels of melatonin can be found in the lateral ventricles. Med Hypotheses 35:154–158. doi:10.1016/0306-9877(91)90041-V

    Article  CAS  PubMed  Google Scholar 

  106. Michaud JP, Bellavance MA, Prefontaine P, Rivest S (2013) Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta. Cell Rep 5:646–653. doi:10.1016/j.celrep.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  107. Ferrer I (2010) Cognitive impairment of vascular origin: neuropathology of cognitive impairment of vascular origin. J Neurol Sci 299:139–149. doi:10.1016/j.jns.2010.08.039

    Article  PubMed  Google Scholar 

  108. Thal DR, Grinberg LT, Attems J (2012) Vascular dementia: different forms of vessel disorders contribute to the development of dementia in the elderly brain. Exp Gerontol 47:816–824. doi:10.1016/j.exger.2012.05.023

    Article  PubMed Central  PubMed  Google Scholar 

  109. Gouw AA, Seewann A, van der Flier WM et al (2011) Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 82:126–135. doi:10.1136/jnnp.2009.204685

    Article  PubMed  Google Scholar 

  110. Groeschel S, Chong WK, Surtees R, Hanefeld F (2006) Virchow–Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology 48:745–754. doi:10.1007/s00234-006-0112-1

    Article  PubMed  Google Scholar 

  111. Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259. doi:10.1038/ng0393-256

    Article  CAS  PubMed  Google Scholar 

  112. Buerge C, Steiger G, Kneifel S et al (2011) Lobar dementia due to extreme widening of Virchow–Robin spaces in one hemisphere. Case Rep Neurol 3:136–140. doi:10.1159/000329267

    Article  PubMed Central  PubMed  Google Scholar 

  113. Roher AE, Kuo Y-M, Esh C et al (2003) Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 9:112–122

    PubMed Central  PubMed  Google Scholar 

  114. Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710. doi:10.1038/383707a0

    Article  CAS  PubMed  Google Scholar 

  115. Moretti L, Cristofori I, Weaver SM et al (2012) Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol 11:1103–1112. doi:10.1016/S1474-4422(12)70226-0

    Article  PubMed  Google Scholar 

  116. Plassman BL, Havlik RJ, Steffens DC et al (2000) Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55:1158–1166. doi:10.1212/WNL.55.8.1158

    Article  CAS  PubMed  Google Scholar 

  117. Irimia A, Wang B, Aylward SR et al (2012) Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. Neuroimage Clin 1:1–17. doi:10.1016/j.nicl.2012.08.002

    Article  PubMed Central  PubMed  Google Scholar 

  118. Pop V, Sorensen DW, Kamper JE et al (2013) Early brain injury alters the blood-brain barrier phenotype in parallel with beta-amyloid and cognitive changes in adulthood. J Cereb Blood Flow Metab 33:205–214. doi:10.1038/jcbfm.2012.154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Shaw GJ, Jauch EC, Zemlan FP (2002) Serum cleaved Tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med 39:254–257. doi:10.1067/mem.2002.121214

    Article  PubMed  Google Scholar 

  120. Zemlan FP, Jauch EC, Mulchahey JJ et al (2002) C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res 947:131–139. doi:10.1016/S0006-8993(02)02920-7

    Article  CAS  PubMed  Google Scholar 

  121. Gabbita SP, Scheff SW, Menard RM et al (2005) Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury. J Neurotrauma 22:83–94. doi:10.1089/neu.2005.22.83

    Article  PubMed  Google Scholar 

  122. Iliff JJ, Chen MJ, Plog BA et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193. doi:10.1523/JNEUROSCI.3020-14.2014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Gaberel T, Gakuba C, Goulay R et al (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45:3092–3096. doi:10.1161/STROKEAHA.114.006617

    Article  CAS  PubMed  Google Scholar 

  124. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336

    CAS  PubMed  Google Scholar 

  125. Mondello S, Muller U, Jeromin A et al (2011) Blood-based diagnostics of traumatic brain injuries. Expert Rev Mol Diagn 11:65–78. doi:10.1586/erm.10.104

    Article  PubMed Central  PubMed  Google Scholar 

  126. Plog BA, Dashnaw ML, Hitomi E et al (2015) Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci 35:518–526. doi:10.1523/JNEUROSCI.3742-14.2015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Rennels ML, Gregory TF, Blaumanis OR et al (1985) Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63. doi:10.1016/0006-8993(85)91383-6

    Article  CAS  PubMed  Google Scholar 

  128. Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439

    CAS  PubMed  Google Scholar 

  129. Ichimura T, Fraser PA, Cserr HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 545:103–113. doi:10.1016/0006-8993(91)91275-6

    Article  CAS  PubMed  Google Scholar 

  130. Ball KK, Cruz NF, Mrak RE, Dienel GA (2010) Trafficking of glucose, lactate, and amyloid-beta from the inferior colliculus through perivascular routes. J Cereb Blood Flow Metab 30:162–176. doi:10.1038/jcbfm.2009.206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536. doi:10.1111/j.1471-4159.2009.06333.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Ju Y-ES, McLeland JS, Toedebusch CD et al (2013) Sleep quality and preclinical Alzheimer disease. JAMA Neurol 70:587–593. doi:10.1001/jamaneurol.2013.2334

    Article  PubMed Central  PubMed  Google Scholar 

  133. Tonsfeldt KJ, Chappell PE (2012) Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 349:3–12. doi:10.1016/j.mce.2011.07.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184:1341–1348. doi:10.1126/science.184.4144.1341

    Article  CAS  PubMed  Google Scholar 

  135. Yang L, Kress BT, Weber HJ et al (2013) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11:107. doi:10.1186/1479-5876-11-107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Aydin K, Terzibasioglu E, Sencer S et al (2008) Localization of cerebrospinal fluid leaks by gadolinium-enhanced magnetic resonance cisternography: a 5-year single-center experience. Neurosurgery 62:584–589. doi:10.1227/01.neu.0000317306.39203.24

    Article  PubMed  Google Scholar 

  137. Schick U, Musahl C, Papke K (2010) Diagnostics and treatment of spontaneous intracranial hypotension. Minim Invasive Neurosurg 53:15–20. doi:10.1055/s-0030-1247552

    Article  CAS  PubMed  Google Scholar 

  138. Lundgaard I, Li B, Xie L et al (2015) Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun. doi:10.1038/ncomms7807

    Google Scholar 

  139. Hadaczek P, Yamashita Y, Mirek H et al (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14:69–78. doi:10.1016/j.ymthe.2006.02.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH (NINDS NS075177 and NS078304). We thank Gerry Dienel, Ben Kress, and Rashid Deane for comments on the manuscript and Takahiro Takano for illustrations.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Aalling Jessen.

Additional information

Nadia Aalling Jessen, Anne Sofie Finmann Munk and Iben Lundgaard have contributed equally to the work.

Special Issue: In honor of Dr. Gerald Dienel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jessen, N.A., Munk, A.S.F., Lundgaard, I. et al. The Glymphatic System: A Beginner’s Guide. Neurochem Res 40, 2583–2599 (2015). https://doi.org/10.1007/s11064-015-1581-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1581-6

Keywords

Navigation