Skip to main content

Advertisement

Log in

3D printing based on imaging data: review of medical applications

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Generation of graspable three-dimensional objects applied for surgical planning, prosthetics and related applications using 3D printing or rapid prototyping is summarized and evaluated.

Materials and methods

Graspable 3D objects overcome the limitations of 3D visualizations which can only be displayed on flat screens. 3D objects can be produced based on CT or MRI volumetric medical images. Using dedicated post-processing algorithms, a spatial model can be extracted from image data sets and exported to machine-readable data. That spatial model data is utilized by special printers for generating the final rapid prototype model.

Results

Patient–clinician interaction, surgical training, medical research and education may require graspable 3D objects. The limitations of rapid prototyping include cost and complexity, as well as the need for specialized equipment and consumables such as photoresist resins.

Conclusions

Medical application of rapid prototyping is feasible for specialized surgical planning and prosthetics applications and has significant potential for development of new medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kido T, Kurata A, Higashino H, Sugawara Y, Okayama H, Higaki J, Anno H, Katada K, Mori S, Tanada S, Endo M, Mochizuki T (2007) Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 25: 38–44

    Article  PubMed  Google Scholar 

  2. Meaney J, Goyen M (2007) Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol 17(Suppl 2): B2–B6

    PubMed  Google Scholar 

  3. Doi K (2006) Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 51: R5–R27

    Article  PubMed  Google Scholar 

  4. Kirchgeorg M, Prokop M (1998) Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 28: 39–54

    Article  CAS  PubMed  Google Scholar 

  5. von Tengg-Kobligk H, Weber T, Rengier F, Kotelis D, Geisbusch P, Bockler D, Schumacher H, Ley S (2008) Imaging modalities for the thoracic aorta. J Cardiovasc Surg(Torino) 49: 429–447

    Google Scholar 

  6. McGurk M, Amis A, Potamianos P, Goodger N (1997) Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl 79: 169–174

    CAS  PubMed  Google Scholar 

  7. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22: 949–962

    PubMed  Google Scholar 

  8. Rengier F, Weber TF, Giesel FL, Böckler D, Kauczor H, von Tengg-Kobligk H (2009) Centerline analysis of aortic CT angiographic examinations: benefits and limitations. AJR Am J Roentgenol 192: W255–W263

    Article  PubMed  Google Scholar 

  9. Frakes DH, Smith MJT, Parks J, Sharma S, Fogel SM, Yoganathan AP (2005) New techniques for the reconstruction of complex vascular anatomies from MRI images. J Cardiovasc Magn Reson 7: 425–432

    Article  PubMed  Google Scholar 

  10. Hahn H, Millar W, Klinghammer O, Durkin M, Tulipano P, Peitgen H (2004) A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Methods Inf Med 43: 376–382

    CAS  PubMed  Google Scholar 

  11. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40: 268–280

    Article  CAS  PubMed  Google Scholar 

  12. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1: 910–917

    Article  CAS  PubMed  Google Scholar 

  13. Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7: 1123–1127

    Article  CAS  PubMed  Google Scholar 

  14. Elgalal M, Kozakiewicz M, Olszycki M, Walkowiak B, Stefanczyk L (2009) Custom implant design and surgical pre-planning using rapid prototyping and anatomical models for the repair of orbital floor fractures. Eur Radiol 19(Suppl 1): S397

    Google Scholar 

  15. D’Urso P, Earwaker W, Barker T, Redmond M, Thompson R, Effeney D, Tomlinson F (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53: 200–204

    Article  PubMed  Google Scholar 

  16. Faber J, Berto P, Quaresma M (2006) Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop 129: 583–589

    Article  PubMed  Google Scholar 

  17. Mavili M, Canter H, Saglam-Aydinatay B, Kamaci S, Kocadereli I (2007) Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg 18: 740–747

    Article  PubMed  Google Scholar 

  18. Muller A, Krishnan K, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14: 899–914

    Article  PubMed  Google Scholar 

  19. Poukens J, Haex J, Riediger D (2003) The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg 8: 146–154

    Article  PubMed  Google Scholar 

  20. Wagner J, Baack B, Brown G, Kelly J (2004) Rapid 3-dimensional prototyping for surgical repair of maxillofacial fractures: a technical note. J Oral Maxillofac Surg 62: 898–901

    Article  PubMed  Google Scholar 

  21. Guarino J, Tennyson S, McCain G, Bond L, Shea K, King H (2007) Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop 27: 955–960

    PubMed  Google Scholar 

  22. Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38: 1158–1162

    Article  CAS  PubMed  Google Scholar 

  23. Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J (2004) Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100: 139–145

    Article  PubMed  Google Scholar 

  24. Giesel FL, Hart AR, Hahn HK, Wignall E, Rengier F, Talanow R, Wilkinson ID, Zechmann CM, Weber M, Kauczor HU, Essig M, Griffiths PD (2009) 3D reconstructions of the cerebral ventricles and volume quantification in children with brain malformations. Acad Radiol 16: 610–617

    Article  PubMed  Google Scholar 

  25. Paiva W, Amorim R, Bezerra D, Masini M (2007) Application of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr 65: 443–445

    PubMed  Google Scholar 

  26. Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, Schievano S (2007) Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng H 221: 407–416

    Article  CAS  PubMed  Google Scholar 

  27. Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD (2008) Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117: 2388–2394

    Article  PubMed  Google Scholar 

  28. Hiramatsu H, Yamaguchi H, Nimi S, Ono H (2004) Rapid prototyping of the larynx for laryngeal frame work surgery]. Nippon Jibiinkoka Gakkai Kaiho 107: 949–955

    PubMed  Google Scholar 

  29. D’Urso P, Barker T, Earwaker W, Bruce L, Atkinson R, Lanigan M, Arvier J, Effeney D (1999) Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg 27: 30–37

    PubMed  Google Scholar 

  30. Kalet I, Wu J, Lease M, Austin-Seymour M, Brinkley J, Rosse C (1999) Anatomical information in radiation treatment planning. Proc AMIA Symp 291–295

  31. Sun S, Wu C (2004) Using the full scale 3D solid anthropometric model in radiation oncology positioning and verification. Conf Proc IEEE Eng Med Biol Soc 5: 3432–3435

    PubMed  Google Scholar 

  32. Zemnick C, Woodhouse S, Gewanter R, Raphael M, Piro J (2007) Rapid prototyping technique for creating a radiation shield. J Prosthet Dent 97: 236–241

    Article  PubMed  Google Scholar 

  33. Singare S, Liu Y, Li D, Lu B, Wang J, He S (2008) Individually prefabricated prosthesis for maxilla reconstruction. J Prosthodont 17: 135–140

    PubMed  Google Scholar 

  34. Lee M, Chang C, Ku Y (2008) New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration. J Med Eng Technol 32: 83–90

    Article  PubMed  Google Scholar 

  35. Dai K, Yan M, Zhu Z, Sun Y (2007) Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplasty 22: 981–986

    Article  PubMed  Google Scholar 

  36. Harrysson O, Hosni Y, Nayfeh J (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient- specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8: 91

    Article  PubMed  Google Scholar 

  37. He J, Li D, Lu B, Wang Z, Tao Z (2006) Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng [H] 220: 823–830

    Google Scholar 

  38. Wang Z, Teng Y, Li D (2004) Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: computer-assisted design and manufacturing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 18: 347–351

    PubMed  Google Scholar 

  39. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res Part B Appl Biomater 85: 573–582

    Article  PubMed  CAS  Google Scholar 

  40. Subburaj K, Nair C, Rajesh S, Meshram S, Ravi B (2007) Rapid development of auricular prosthesis using CAD and rapid prototyping technologies. Int J Oral Maxillofac Surg 36: 938–943

    Article  CAS  PubMed  Google Scholar 

  41. Ciocca L, Mingucci R, Gassino G, Scotti R (2007) CAD/CAM ear model and virtual construction of the mold. J Prosthet Dent 98: 339–343

    Article  PubMed  Google Scholar 

  42. Canstein C, Cachot P, Faust A, Stalder A, Bock J, Frydrychowicz A, Kuffer J, Hennig J, Markl M (2008) 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59: 535–546

    Article  CAS  PubMed  Google Scholar 

  43. Chung S, Son Y, Shin S, Kim S (2006) Nasal airflow during respiratory cycle. Am J Rhinol 20: 379–384

    Article  PubMed  Google Scholar 

  44. Tek P, Chiganos T, Mohammed J, Eddington D, Fall C, Ifft P, Rousche P (2008) Rapid prototyping for neuroscience and neural engineering. J Neurosci Methods 172: 263–269

    Article  PubMed  Google Scholar 

  45. de Zélicourt D, Pekkan K, Kitajima H, Frakes D, Yoganathan AP (2005) Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng 127: 204–207

    Article  PubMed  Google Scholar 

  46. Sulaiman A, Boussel L, Taconnet F, Serfaty J, Alsaid H, Attia C, Huet L, Douek P (2008) In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur J Cardiothorac Surg 33: 53–57

    Article  PubMed  Google Scholar 

  47. Pekkan K, Dasi LP, de Zélicourt D, Sundareswaran KS, Fogel MA, Kanter KR, Yoganathan AP (2009) Hemodynamic performance of stage-2 univentricular reconstruction: Glenn versus hemi-Fontan templates. Ann Biomed Eng 37: 50–63

    Article  PubMed  Google Scholar 

  48. Giesel F, Mehndiratta A, Von Tengg-Kobligk H, Schaeffer A, Teh K, Hoffman E, Kauczor H, van Beek E, Wild J (2009) Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics. Acad Radiol 16: 495–498

    Article  PubMed  Google Scholar 

  49. Suzuki M, Ogawa Y, Kawano A, Hagiwara A, Yamaguchi H, Ono H (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 124: 400–402

    Article  PubMed  Google Scholar 

  50. Knox K, Kerber C, Singel S, Bailey M, Imbesi S (2005) Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheter Cardiovasc Interv 65: 47–53

    Article  CAS  PubMed  Google Scholar 

  51. Bruyere F, Leroux C, Brunereau L, Lermusiaux P (2008) Rapid prototyping model for percutaneous nephrolithotomy training. J Endourol 22: 91–96

    Article  PubMed  Google Scholar 

  52. Kalejs M, von Segesser LK (2009) Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact Cardiovasc Thorac Surg 8: 182–186

    Article  PubMed  Google Scholar 

  53. Berman P, Sosna J (2009) Advent of 3D printing based on MDCT data. Eur Radiol 19(Suppl 1): S397

    Google Scholar 

  54. Taga I, Funakubo A, Fukui Y (2005) Design and development of an artificial implantable lung using multiobjective genetic algorithm: evaluation of gas exchange performance. ASAIO J 51: 92–102

    Article  PubMed  Google Scholar 

  55. Lambrecht JT, Berndt DC, Schumacher R, Zehnder M (2009) Generation of three-dimensional prototype models based on cone beam computed tomography. Int J Comput Assist Radiol Surg 4: 175–180

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Giesel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H. et al. 3D printing based on imaging data: review of medical applications. Int J CARS 5, 335–341 (2010). https://doi.org/10.1007/s11548-010-0476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0476-x

Keywords

Navigation