Skip to main content

Advertisement

Log in

Monitoring of Cerebrovascular Autoregulation: Facts, Myths, and Missing Links

  • Review
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

The methods for continuous assessment of cerebral autoregulation using correlation, phase shift, or transmission (either in time- or frequency-domain) were introduced a decade ago. They express dynamic relationships between slow waves of transcranial Doppler (TCD), blood flow velocity (FV) and cerebral perfusion pressure (CPP), or arterial pressure (ABP). We review a methodology and clinical application of indices useful for monitoring cerebral autoregulation and pressure-reactivity in various scenarios of neuro-critical care. Facts: Poor autoregulation and loss of pressure-reactivity are independent predictors of fatal outcome following head injury. Autoregulation is impaired by too low or too high CPP when compared to autoregulation with normal CPP (usually between 60 and 85 mmHg; and these limits are highly individual). Hemispheric asymmetry of the bi-laterally assessed autoregulation has been associated with asymmetry of CT scan findings: autoregulation was found to be worse ipsilateral to contusion or lateralized edema causing midline shift. The pressure-reactivity (PRx index) correlated with a state of low CBF and CMRO2 revealed using PET studies. The PRx is easier to monitor over prolonged periods of time than the TCD-based indices as it does not require fixation of external probes. Continuous monitoring with the PRx can be used to direct CPP-oriented therapy by determining the optimal CPP for pressure-reactivity. Autoregulation indices are able to reflect transient changes of autoregulation, as seen during plateau waves of ICP. However, minute-to-minute assessment of autoregulation has a poor signal-to-noise ratio. Averaging across time (30 min) or by combining with other relevant parameters improves the accuracy. Myths: It is debatable whether the TCD-based indices in head injured patients can be calculated using ABP instead of CPP. Thresholds for functional and disturbed autoregulation dramatically depends on arterial tension of CO2—therefore, comparison between patients cannot be performed without comparing their PaCO2. The TCD pulsatility index cannot accurately detect the lower limit of autoregulation. Missing Links: We still do not know whether autoregulation-oriented therapy can be understood as a consensus between CPP-directed protocols and the Lund-concept. What are the links between endothelial function and autoregulation indices? Can autoregulation after head injury be improved with statins or EPO, as in subarachnoid hemorrhage? In conclusion, monitoring cerebral autoregulation can be used in a variety of clinical scenarios and may be helpful in delineating optimal therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15(Suppl):201–4.

    PubMed  CAS  Google Scholar 

  2. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.

    Google Scholar 

  3. Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83(1):66–76. doi:10.1097/00000542-199507000-00008.

    Article  PubMed  CAS  Google Scholar 

  4. Cold GE, Jensen FT, Malmros R. The cerebrovascular CO2 reactivity during the acute phase of brain injury. Acta Anaesthesiol Scand. 1977;21:222–31.

    Article  PubMed  CAS  Google Scholar 

  5. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.

    PubMed  CAS  Google Scholar 

  6. Brown CM, Dütsch M, Hecht MJ, Neundörfer B, Hilz MJ. Assessment of cerebrovascular and cardiovascular responses to lower body negative pressure as a test of cerebral autoregulation. J Neurol Sci. 2003;208:71–8. doi:10.1016/S0022-510X(02)00438-0.

    Article  PubMed  Google Scholar 

  7. Mitsis GD, Zhang R, Levine BD, Marmarelis VZ. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J Appl Physiol. 2006;101:354–66. doi:10.1152/japplphysiol.00548.2005.

    Article  PubMed  Google Scholar 

  8. Smielewski P, Czosnyka M, Kirkpatrick P, Pickard JD. Evaluation of the transient hyperemic response test in head-injured patients. J Neurosurg. 1997;86:773–8.

    PubMed  CAS  Google Scholar 

  9. Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G. Assessment of autoregulation by means of periodic changes in blood pressure. Stroke. 1995;26(5):834–7.

    PubMed  CAS  Google Scholar 

  10. Diehl RR, Linden D, Lücke D, Berlit P. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke. 1995;26:1801–4.

    PubMed  CAS  Google Scholar 

  11. Reinhard M, Hetzel A, Lauk M, Lücking CH. Dynamic cerebral autoregulation testing as a diagnostic tool in patients with carotid artery stenosis. Neurol Res. 2001;23:55–63. doi:10.1179/016164101101198299.

    Article  PubMed  CAS  Google Scholar 

  12. Kuo TB, Chern CM, Yang CC, Hsu HY, Wong WJ, Sheng WY, et al. Mechanisms underlying phase lag between systemic arterial blood pressure and cerebral blood flow velocity. Cerebrovasc Dis. 2003;16:402–9. doi:10.1159/000072564.

    Article  PubMed  Google Scholar 

  13. Panerai RB, White RP, Markus HS, Evans DH. Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure. Stroke. 1998;29:2341–6.

    PubMed  CAS  Google Scholar 

  14. Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26:1014–9.

    PubMed  CAS  Google Scholar 

  15. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.

    PubMed  CAS  Google Scholar 

  16. Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ. Phase dynamics in cerebral autoregulation. Am J Physiol Heart Circ Physiol. 2005;289:H2272–9. doi:10.1152/ajpheart.01307.2004.

    Article  PubMed  CAS  Google Scholar 

  17. Novak V, Yang AC, Lepicovsky L, Goldberger AL, Lipsitz LA, Peng CK. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension. Biomed Eng Online. 2004;3(1):39.

    Article  PubMed  Google Scholar 

  18. Hu K, Peng CK, Czosnyka M, Zhao P, Novak V. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations. Cardiovasc Eng. 2008;8:60–71. doi:10.1007/s10558-007-9045-5.

    Article  PubMed  Google Scholar 

  19. Gooskens I, Schmidt EA, Czosnyka M, Piechnik SK, Smielewski P, Kirkpatrick PJ, et al. Pressure-autoregulation, CO2 reactivity and asymmetry of haemodynamic parameters in patients with carotid artery stenotic disease. A clinical appraisal. Acta Neurochir (Wien). 2003;145:527–32. doi:10.1007/s00701-003-0045-y.

    Article  CAS  Google Scholar 

  20. Piechnik SK, Yang X, Czosnyka M, Smielewski P, Fletcher SH, Jones AL, et al. The continuous assessment of cerebrovascular reactivity: a validation of the method in healthy volunteers. Anesth Analg. 1999;89:944–9. doi:10.1097/00000539-199910000-00023.

    Article  PubMed  CAS  Google Scholar 

  21. Reinhard M, Roth M, Müller T, Czosnyka M, Timmer J, Hetzel A. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index. Stroke. 2003;34:2138–44. doi:10.1161/01.STR.0000087788.65566.AC.

    Article  PubMed  CAS  Google Scholar 

  22. Czosnyka M, Smielewski P, Lavinio A, Pickard JD, Panerai R. An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg. 2008;106:234–9.

    Article  PubMed  Google Scholar 

  23. Eggers J, Seidel G, Koch B, König IR. Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA. Neurology. 2005;64:1052–4.

    PubMed  Google Scholar 

  24. Reinhard M, Wehrle-Wieland E, Grabiak D, Roth M, Guschlbauer B, Timmer J, et al. Oscillatory cerebral hemodynamics—the macro- vs. micro-vascular level. J Neurol Sci. 2006;250:103–9. doi:10.1016/j.jns.2006.07.011.

    Article  PubMed  Google Scholar 

  25. Wong FY, Leung TS, Austin T, Wilkinson M, Meek JH, Wyatt JS, et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics. 2008;121:e604–11. doi:10.1542/peds.2007-1487.

    Article  PubMed  Google Scholar 

  26. Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38:2818–25. doi:10.1161/STROKEAHA.107.485706.

    Article  PubMed  Google Scholar 

  27. Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2008 [Epub ahead of print]. doi:10.1007/s12028-008-9140-5.

  28. Menzel M, Soukup J, Henze D, Clausen T, Marx T, Hillman A, et al. Brain tissue oxygen monitoring for assessment of autoregulation: preliminary results suggest a new hypothesis. J Neurosurg Anesthesiol. 2003;15:33–41. doi:10.1097/00008506-200301000-00006.

    Article  PubMed  CAS  Google Scholar 

  29. Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38:981–6. doi:10.1161/01.STR.0000257964.65743.99.

    Article  PubMed  Google Scholar 

  30. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    PubMed  CAS  Google Scholar 

  31. MacKenzie ET, Farrar JK, Fitch W, et al. Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke. 1979;10:711–8.

    PubMed  CAS  Google Scholar 

  32. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7. doi:10.1097/00006123-199707000-00005.

    Article  PubMed  CAS  Google Scholar 

  33. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, et al. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34:2404–9. doi:10.1161/01.STR.0000089014.59668.04.

    Article  PubMed  Google Scholar 

  34. Steiner LA, Coles JP, Czosnyka M, Minhas PS, Fryer TD, Aigbirhio FI, et al. Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury. J Neurol Neurosurg Psychiatr. 2003;74:765–70. doi:10.1136/jnnp.74.6.765.

    Article  PubMed  CAS  Google Scholar 

  35. Balestreri M, Czosnyka M, Hutchinson P, Steiner LA, Hiler M, Smielewski P, et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care. 2006;4:8–13. doi:10.1385/NCC:4:1:008.

    Article  PubMed  Google Scholar 

  36. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, et al. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien). 2004;146:131–41. doi:10.1007/s00701-003-0187-y.

    Article  CAS  Google Scholar 

  37. Hlatky R, Valadka AB, Robertson CS. Analysis of dynamic autoregulation assessed by the cuff deflation method. Neurocrit Care. 2006;4:127–32. doi:10.1385/NCC:4:2:127.

    Article  PubMed  Google Scholar 

  38. Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004;98:1133–9. doi:10.1213/01.ANE.0000111101.41190.99.

    Article  PubMed  Google Scholar 

  39. Tseng MY, Al-Rawi PG, Czosnyka M, Hutchinson PJ, Richards H, Pickard JD, et al. Enhancement of cerebral blood flow using systemic hypertonic saline therapy improves outcome in patients with poor-grade spontaneous subarachnoid hemorrhage. J Neurosurg. 2007;107:274–82. doi:10.3171/JNS-07/08/0274.

    Article  PubMed  Google Scholar 

  40. Timofeev I, Czosnyka M, Nortje J, Smielewski P, Kirkpatrick P, Gupta A, et al. Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg. 2008;108:66–73. doi:10.3171/JNS/2008/108/01/0066.

    Article  PubMed  Google Scholar 

  41. Schmidt EA, Czosnyka M, Steiner LA, Balestreri M, Smielewski P, Piechnik SK, et al. Asymmetry of pressure autoregulation after traumatic brain injury. J Neurosurg. 2003;99:991–8. 34.

    Article  PubMed  Google Scholar 

  42. Kun Hu. Men-Tzung Lo, Peng, Vera Novak, Eric A. Schmidt, Marek Czosnyka. Nonlinear pressure-flow relationship is able to detect asymmetry of brain blood circulation associated with midline shift. J Neurotrauma 2008 (in press).

  43. Reinhard M, Wihler C, Roth M, Harloff A, Niesen WD, Timmer J, et al. Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis. Cerebrovasc Dis. 2008;26:147–55. doi:10.1159/000139662.

    Article  PubMed  Google Scholar 

  44. Dohmen C, Bosche B, Graf R, Reithmeier T, Ernestus RI, Brinker G, et al. Identification and clinical impact of impaired cerebrovascular autoregulation in patients with malignant middle cerebral artery infarction. Stroke. 2007;38:56–61. doi:10.1161/01.STR.0000251642.18522.b6.

    Article  PubMed  Google Scholar 

  45. Chan KH, Miller JD, Dearden NM, Andrews PJ, Midgley S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg. 1992;77:55–61.

    PubMed  CAS  Google Scholar 

  46. Lewis SB, Wong ML, Bannan PE, Piper IR, Reilly PL. Transcranial Doppler identification of changing autoregulatory thresholds after autoregulatory impairment. Neurosurgery. 2001;48:369–75. doi:10.1097/00006123-200102000-00026.

    Article  PubMed  CAS  Google Scholar 

  47. Richards HK, Czosnyka M, Whitehouse H, Pickard JD. Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation. Acta Neurochir Suppl (Wien). 1998;71:229–32.

    CAS  Google Scholar 

  48. Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84:79–84.

    PubMed  CAS  Google Scholar 

  49. Lewis PM, Smielewski P, Pickard JD, Czosnyka M. Dynamic cerebral autoregulation: should intracranial pressure be taken into account? Acta Neurochir (Wien). 2007;149:549–55. doi:10.1007/s00701-007-1160-y.

    Article  CAS  Google Scholar 

  50. Panerai RB, Kerins V, Fan L, Yeoman PM, Hope T, Evans DH. Association between dynamic cerebral autoregulation and mortality in severe head injury. Br J Neurosurg. 2004;18:471–9.

    Article  PubMed  CAS  Google Scholar 

  51. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. J Neurosurg. 2001;95:756–63.

    Article  PubMed  CAS  Google Scholar 

  52. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8. doi:10.1097/00003246-200204000-00002.

    Article  PubMed  Google Scholar 

  53. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.

    PubMed  CAS  Google Scholar 

  54. Asgeirsson B, Grände PO, Nordström CH. A new therapy of post-trauma brain oedema based on hemodynamic principles for brain volume regulation. Intensive Care Med. 1994;20:260–7. doi:10.1007/BF01708961.

    Article  PubMed  CAS  Google Scholar 

  55. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36:1627–32. doi:10.1161/01.STR.0000176743.67564.5d.

    Article  PubMed  CAS  Google Scholar 

  56. Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist. 2006;12:117–26. doi:10.1097/01.nrl.0000215741.01699.77.

    Article  PubMed  Google Scholar 

  57. Lavinio A, Timofeev I, Nortje J, Outtrim J, Smielewski P, Gupta A, et al. Cerebrovascular reactivity during hypothermia and rewarming. Br J Anaesth. 2007;99:237–44. doi:10.1093/bja/aem118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Czosnyka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czosnyka, M., Brady, K., Reinhard, M. et al. Monitoring of Cerebrovascular Autoregulation: Facts, Myths, and Missing Links. Neurocrit Care 10, 373–386 (2009). https://doi.org/10.1007/s12028-008-9175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-008-9175-7

Keywords

Navigation