Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mechanosensory complex that mediates the endothelial cell response to fluid shear stress

Abstract

Shear stress is a fundamental determinant of vascular homeostasis, regulating vascular remodelling, cardiac development and atherogenesis1, but the mechanisms of transduction are poorly understood. Previous work showed that the conversion of integrins to a high-affinity state mediates a subset of shear responses, including cell alignment and gene expression2,3,4. Here we investigate the pathway upstream of integrin activation. PECAM-1 (which directly transmits mechanical force), vascular endothelial cell cadherin (which functions as an adaptor) and VEGFR2 (which activates phosphatidylinositol-3-OH kinase) comprise a mechanosensory complex. Together, these receptors are sufficient to confer responsiveness to flow in heterologous cells. In support of the relevance of this pathway in vivo, PECAM-1-knockout mice do not activate NF-κB and downstream inflammatory genes in regions of disturbed flow. Therefore, this mechanosensing pathway is required for the earliest-known events in atherogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of PECAM-1 -/- and VE-cadherin -/- cell lines to shear stress.
Figure 2: Direct mechanotransduction and adhesion-independent role for VE-cadherin.
Figure 3: PECAM-1, VE-cadherin and VEGFR2 form a mechanosensory complex.
Figure 4: Responses in PECAM-1 -/- mice.

Similar content being viewed by others

References

  1. Davies, P. F. Overview: Temporal and spatial relationships in shear stress-mediated endothelial signalling. J. Vasc. Res. 34, 208–211 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Tzima, E., del Pozo, M. A., Shattil, S. J., Chien, S. & Schwartz, M. A. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20, 4639–4647 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tzima, E. et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21, 6791–6800 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tzima, E., Kiosses, W. B., del Pozo, M. A. & Schwartz, M. A. Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J. Biol. Chem. 278, 31020–31023 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Newman, P. J. & Newman, D. K. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler. Thromb. Vasc. Biol. 23, 953–964 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Shay-Salit, A. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl Acad. Sci. USA 99, 9462–9467 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Osawa, M., Masuda, M., Kusano, K. I. & Fujiwara, K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J. Cell Biol. 158, 773–785 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohan, S., Mohan, N. & Sprague, E. A. Differential activation of NF-κB in human aortic endothelial cells conditioned to specific flow environments. Am. J. Physiol. 273, C572–C578 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Monaco, C. & Paleolog, E. Nuclear factor κB: A potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc. Res. 61, 671–682 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Hughes, P. E. & Pfaff, M. Integrin affinity modulation. Trends Cell Biol. 8, 359–364 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Pampori, N. et al. Mechanisms and consequences of affinity modulation of integrin αVβ3 detected with a novel patch-engineered monovalent ligand. J. Biol. Chem. 274, 21609–21616 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Okuda, M. et al. Shear stress stimulation of p130(cas) tyrosine phosphorylation requires calcium-dependent c-Src activation. J. Biol. Chem. 274, 26803–26809 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Jalali, S. et al. Shear stress activates p60src-Ras-MAPK signalling pathways in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18, 227–234 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Khachigian, L. M. et al. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF-A-chain promoter. Arterioscler. Thromb. Vasc. Biol. 17, 2280–2286 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Corada, M. et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97, 1679–1684 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Chen, K. D. et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274, 18393–18400 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Jin, Z. G. et al. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93, 354–363 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Levesque, M. J. & Nerem, R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107, 341–347 (1985)

    Article  CAS  PubMed  Google Scholar 

  19. Dayanir, V., Meyer, R. D., Lashkari, K. & Rahimi, N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J. Biol. Chem. 276, 17686–17692 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Lampugnani, M. G. et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol. Biol. Cell 13, 1175–1189 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003)

    Article  PubMed  Google Scholar 

  22. Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. & Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842–851 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Hajra, L. et al. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl Acad. Sci. USA 97, 9052–9057 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, T. T., Barreuther, M., Davis, S. & Madri, J. A. Platelet endothelial cell adhesion molecule-1 is phosphorylatable by c-Src, binds Src-Src homology 2 domain, and exhibits immunoreceptor tyrosine-based activation motif-like properties. J. Biol. Chem. 272, 14442–14446 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Masuda, M. & Fujiwara, K. Morphological responses of single endothelial cells exposed to physiological levels of fluid shear stress. Front. Med. Biol. Eng. 5, 79–87 (1993)

    CAS  PubMed  Google Scholar 

  26. Smalt, R., Mitchell, F. T., Howard, R. L. & Chambers, T. J. Mechanotransduction in bone cells: induction of nitric oxide and prostaglandin synthesis by fluid shear stress, but not by mechanical strain. Adv. Exp. Med. Biol. 433, 311–314 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. van der Pauw, M. T. et al. Response of periodontal ligament fibroblasts and gingival fibroblasts to pulsating fluid flow: nitric oxide and prostaglandin E2 release and expression of tissue non-specific alkaline phosphatase activity. J. Periodontal Res. 35, 335–343 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Elrayess, M. A. et al. A novel functional polymorphism in the PECAM-1 gene (53G > A) is associated with progression of atherosclerosis in the LOCAT and REGRESS studies. Atherosclerosis 168, 131–138 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Wong, C. W. et al. PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin αvβ3 in cis. Mol. Biol. Cell 11, 3109–3121 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Graesser, D. et al. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J. Clin. Invest. 109, 383–392 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the NIH. E.T. is an AHA Western States Fellow. H.D. is supported by the Department of Defense. We thank M. Ginsberg, D. Salomon, J. Quigley and R. Klemke for their help. We also thank N. Resnick for providing the PDGF-A/SSRE construct, E. Schaefer for providing the phospho-specific VEGFR2 antibodies and J. Downward for the GFP–AKT PH construct. We thank P. J. Newman, S. Chien and the Developmental Studies Hybridoma Bank for providing additional reagents. Discussions with A. W. Orr and J. S. Reader were also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Alexander Schwartz.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Activation of integrin αvβ3, PI 3-kinase and Src by shear stress. (PDF 168 kb)

Supplementary Figure S2

Recruitment of actin by beads. (PDF 164 kb)

Supplementary Figure S3

WOW-1 localises near cell-cell junctions. (PDF 70 kb)

Supplementary Figure S4

Role of VEGFR2 in shear stress signalling. (PDF 98 kb)

Supplementary Figure S5

Transfection of Cos7 cells (PDF 158 kb)

Supplementary Figure S6

Integrin activation requires β-catenin. (PDF 8 kb)

Supplementary Figure Legends

Full descriptions to accompany the above Supplementary Figures. (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzima, E., Irani-Tehrani, M., Kiosses, W. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005). https://doi.org/10.1038/nature03952

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03952

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing