Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis

This article has been updated

Abstract

In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions1,2,3. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ephrin-B2 regulates angiogenesis.
Figure 2: Ephrin-B2 modulates endothelial cell sprouting.
Figure 3: VEGFR3 internalization and signalling.
Figure 4: Ephrin-B2 controls VEGFR3 internalization in vivo.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

Change history

  • 27 May 2010

    Three duplicated references have been removed

References

  1. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol. 8, 464–478 (2007)

    Article  CAS  Google Scholar 

  2. Gerhardt, H. & Betsholtz, C. How do endothelial cells orientate? Experientia Suppl. 94, 3–15 (2005)

  3. Klagsbrun, M. & Eichmann, A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 16, 535–548 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Arvanitis, D. & Davy, A. Eph/ephrin signaling: networks. Genes Dev. 22, 416–429 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Egea, J. & Klein, R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 17, 230–238 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Poliakov, A., Cotrina, M. & Wilkinson, D. G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell Biol. 6, 462–475 (2005)

    Article  CAS  Google Scholar 

  8. Lawson, N. D. & Weinstein, B. M. Arteries and veins: making a difference with zebrafish. Nature Rev. Genet. 3, 674–682 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Lamont, R. E. & Childs, S. MAPping out arteries and veins. Sci. STKE 2006, pe39 (2006)

    Article  PubMed  Google Scholar 

  10. le Noble, F. et al. Flow regulates arterial–venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Gerety, S. S., Wang, H. U., Chen, Z. F. & Anderson, D. J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin, D. et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev. Biol. 230, 139–150 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Gale, N. W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 230, 151–160 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Davy, A. & Soriano, P. Ephrin-B2 forward signaling regulates somite patterning and neural crest cell development. Dev. Biol. 304, 182–193 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, A. C., Murfee, W. L. & Peirce, S. M. EphB4 expression along adult rat microvascular networks: EphB4 is more than a venous specific marker. Microcirculation 14, 253–267 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, Z., Zheng, T., Lee, C. G., Homer, R. J. & Elias, J. A. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin. Cell Dev. Biol. 13, 121–128 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Sun, J. F. et al. Microvascular patterning is controlled by fine-tuning the Akt signal. Proc. Natl Acad. Sci. USA 102, 128–133 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Tammela, T., Enholm, B., Alitalo, K. & Paavonen, K. The biology of vascular endothelial growth factors. Cardiovasc. Res. 65, 550–563 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. McColl, B. K., Stacker, S. A. & Achen, M. G. Molecular regulation of the VEGF family–inducers of angiogenesis and lymphangiogenesis. APMIS 112, 463–480 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Zachary, I. & Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 49, 568–581 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling – in control of vascular function. Nature Rev. Mol. Cell Biol. 7, 359–371 (2006)

    Article  CAS  Google Scholar 

  27. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Sawamiphak, S. et al. Ephrin-B2 regulates VEGF-R2 function in developmental and tumour angiogenesis. Nature 10.1038/nature08995 (this issue)

  29. Grunwald, I. C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nature Neurosci. 7, 33–40 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Foo, S. S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Deutsch, U. et al. Inducible endothelial cell-specific gene expression in transgenic mouse embryos and adult mice. Exp. Cell Res. 314, 1202–1216 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Osoegawa, K. et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 10, 116–128 (2000)

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  PubMed  Google Scholar 

  36. Jat, P. S. et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Natl Acad. Sci. USA 88, 5096–5100 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Morgan, S. M., Samulowitz, U., Darley, L., Simmons, D. L. & Vestweber, D. Biochemical characterization and molecular cloning of a novel endothelial-specific sialomucin. Blood 93, 165–175 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Benedito, I. Schmidt, S. Hoffmann, I. Rosewell, S.M. Kuijper, F. Gisler and N. Hostettler for their help, N. Copeland and A. Eichmann for information and reagents, P. Chambon for the CreERT2 cDNA, A.L. Bermange, J.D. Leslie and J. Lewis for help with zebrafish experiments, and A. Acker-Palmer for discussions and for reading the manuscript. Cancer Research UK, the Max-Planck-Society, the German Research Foundation (programmes SFB 629 and SPP 1190) and the EMBO LTF programme provided funding.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., M.E.P., M.N., C.D.N. and R.H.A. designed experiments. Y.W., M.E.P. and T.S.S. characterized mouse mutants. M.L.B. and A.S. performed zebrafish experiments, M.L.B. microinjection assays and M.N. all other cell culture experiments. A.D., U.D., L.E.B., S.A. and T.M. generated mouse mutants or lines, U.L. and A.B. the EphB4 inhibitors. Y.W., M.N., M.E.P. and R.H.A. wrote the manuscript.

Corresponding author

Correspondence to Ralf H. Adams.

Ethics declarations

Competing interests

U.L. and A.B. are employed by Oncalis, the company that has developed the inhibitors ONC-101 and ONC-102.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and References, Supplementary Figures 1-16 with legends and full captions for Supplementary Movies S1-S3. (PDF 8879 kb)

Supplementary Movie S1

A fluorescent time-lapse movie showing dynamics of intersegmental vessels in 27 hpf fli1-EGFP embryo injected with control morpholino. (MOV 2136 kb)

Supplementary Movie S2

Intersegmental vessels in 27 hpf efnb2a-MO-injected fli1-EGFP embryo showed few filopodia and instead blunt, bleb-like protrusions were seen on the cell surface. (MOV 2298 kb)

Supplementary Movie S3

Ephrin-B2 overexpression in single cells within a confluent monolayer of (uninjected) HUVECs. (MOV 3090 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Nakayama, M., Pitulescu, M. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010). https://doi.org/10.1038/nature09002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09002

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing