Skip to main content

Advertisement

Log in

Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endovascular stenting appears to be an appealing treatment modality to selected complex intracranial aneurysms. However, stents currently used for endovascular treatment are not specifically designed for the cerebrovasculature. Stent parameters, such as porosity and filament size, have to be carefully optimized for long-term successful treatment. We investigated the influence of the stent filament size on the intra-aneurysmal flow dynamics in a sidewall aneurysm model in vitro. Three helical stents with 76% porosity but different filament sizes of 178, 153, and 127 μm were studied using particle image velocimetry. Twenty-four pulsatile flow conditions were investigated. The results show that stenting significantly reduces intra-aneurysmal vorticity and the mean circulation inside the aneurysm is reduced to less than 3% of its value before stenting. For constant porosity, a further reduction of the mean circulation, up to 30% can be obtained by reducing the filament diameter. For a constant Womersley number, this further reduction is accentuated with increase in the peak Reynolds number. Further reduction in the mean circulation inside the aneurysm was not achieved for the 127 μm stent. With further reduction in filament diameter, the helical stent filaments positioned against the aneurysm neck started wavering with the flow transferring added momentum into the aneurysm. For stents of smaller filament diameter, a supporting ultrastructure is required. © 2002 Biomedical Engineering Society.

PAC2002: 8719Uv, 8780Rb, 8719La, 0630Gv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Aenis, M., A. P. Stancampiano, A. K. Wakhloo, and B. B. Lieber. Modeling of flow in a straight stented and non-stented side wall aneurysm model. J. Biomech. Eng. 119:206-212, 1997.

    Google Scholar 

  2. Barnett, H. J. M. Stroke: Pathophysiology, Diagnosis and Management. Philadelphia: Churchill Livingstone, 1998.

    Google Scholar 

  3. Barrow, D. L., and A. Reisner. Natural history of intracranial aneurysms and vascular malformations. Clin. Neurosurg. 40:3-39, 1993.

    Google Scholar 

  4. Burleson, A. C., C. M. Strother, and V. T. Turitto. Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. J. Neurosurg. 37:774-784, 1995.

    Google Scholar 

  5. David, C. A., A. G. Vishteh, R. F. Spetzler, M. Lemole, M. T. Lawton, and S. Partovi. Late angiographic follow-up review of surgically treated aneurysms. J. Neurosurg. 91:396-401, 1999.

    Google Scholar 

  6. Forbus, W. D. On the origin of miliary aneurysms of the superficial cerebral arteries. Bull. Johns Hopkins Hospital 47:239, 1930.

    Google Scholar 

  7. Gobin, Y. P., J. L. Counord, P. Flaud, and J. Duffaux. In vitro study of haemodynamics in a giant saccular aneurysm model: Influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 36:530-536, 1994.

    Google Scholar 

  8. Gonzalez, C. F., Y. I. Cho, H. V. Ortega, and J. Moret. Intracranial aneurysms: Flow analysis of their origin and progression. AJNR: Am. J. Neurorad. 13:181-188, 1992.

    Google Scholar 

  9. Graves, V. B., C. M. Strother, C. R. Partington, and A. Rappe. Flow dynamics of lateral carotid artery aneurysms and their effects on coils and balloons: An experimental study in dogs. AJNR: Am. J. Neurorad. 13:189-196, 1992.

    Google Scholar 

  10. Hashimoto, N., C. Kim, H. Kikuchi, M. Kojima, Y. Kang, and F. Hazama. Experimental induction of cerebral aneurysms in monkeys. J. Neurosurg. 67:903-905, 1987.

    Google Scholar 

  11. Kim, C., J. Cervos-Navarro, C. Patzold, Y. Tokuriki, Y. Takebe, and K. Hori. In vivo study of flow pattern at human carotid bifurcation with regard to aneurysm development. Acta Neurochirurgica 115:112-117, 1992.

    Google Scholar 

  12. Kondo, S., N. Hashimoto, H. Kikuchi, F. Hazama, I. Nagata, and H. Kataoka. Cerebral aneurysms arising at nonbranching sites. An experimental study. Stroke 28:398-404, 1997.

    Google Scholar 

  13. Le Roux, P. D., and H. R. Winn. Management of cerebral aneurysms: How can current management be improved? Neurosurgery Clinics of North America 9:421-33, 1998.

    Google Scholar 

  14. Lieber, B. B., and M. J. Gounis. The physics of endoluminal stenting in the treatment of cerebrovascular aneurysms. Neurol. Res. 24:S33-S42, 2002.

    Google Scholar 

  15. Lieber, B. B., N. Nikolaidis, and A. K. Wakhloo. Flow pattern in an intracranial side-wall aneurysm model using particle image velocimetry. In 1998 Advances in Bioengineering, BED Vol. 39, edited by A. P. Yoganathan. New York: ASME, 1998, pp. 49-50.

    Google Scholar 

  16. Lieber, B. B., A. P. Stancampiano, and A. K. Wakhloo. Alteration of hemodynamics in aneurysm models by stenting: Influence of stent porosity. Ann. Biomed. Eng. 25:460-469, 1997.

    Google Scholar 

  17. Liou, T. M., T. W. Chang, and W. C. Chang. Pulsatile flow through a bifurcation with a cerebrovascular aneurysm. J. Biomech. Eng. 116:112-118, 1994.

    Google Scholar 

  18. Nagasawa, S., M. Kawanishi, Y. Tada, S. Kawabata, and T. Ohta. Intraoperative measurement of cortical arterial flow volumes in posterior circulation using Doppler sonography. Neurol. Res. 22:194-196, 2000.

    Google Scholar 

  19. Nagata, I., H. Handa, N. Hashimoto, and F. Hazama. Experimentally induced cerebral aneurysms in rats. VI. Hypertension. Surg. Neurology 14:477-479, 1980.

    Google Scholar 

  20. Nakatani, H., N. Hashimoto, H. Kikuchi, S. Yamaguchi, and H. Niimi. In vivo flow visualization of induced saccular cerebral aneurysms in rats. Acta Neurochirurgica 122:244-249, 1993.

    Google Scholar 

  21. Smith, R. R., Y. Tarassoli, and Y. N. Zubkov. Cerebral Aneurysms: Microvascular and Endovascular Management. New York: Springer, 1994.

    Google Scholar 

  22. Stehbens, W. E. Hemodynamics and the Blood Vessel Wall. Springfield: Charles C. Thomas, 1979.

    Google Scholar 

  23. Steiger, H. J., A. Poll, D. Liepsch, and H. J. Reulen. Haemodynamic stress in lateral saccular aneurysms. An experimental study. Acta Neurochirurgica 86:98-105, 1987.

    Google Scholar 

  24. Strother, C. M., V. B. Graves, and A. Rappe. Aneurysm hemodynamics: An experimental study. AJNR: Am. J. Neurorad. 13:1089-1095, 1992.

    Google Scholar 

  25. Tominaga, R., H. Harasaki, C. Sutton, H. Emoto, H. Kambic, and J. Hollman. Effects of stent design and serum cholesterollevel on the restenosis rate in atherosclerotic rabbits. Am. Heart J. 128:1049-1058, 1993.

    Google Scholar 

  26. Toole, J. F. Cerebrovascular Disorders. Philadelphia: Lippincott, Williams, and Wilkins, 1990.

    Google Scholar 

  27. Wakhloo, A. K., G. Lanzino, B. B. Lieber, and L. N. Hopkins. Stents for intracranial aneurysms: The beginning of a new endovascular era? J. Neurosurg. 43:377-379, 1998.

    Google Scholar 

  28. Weir, B., Intracranial aneurysms and subarachnoid hemorrhage: An overview. In Neurosurgery, edited by R. H. Wilkins and S. S. Rengachary. New York: McGraw-Hill, 1985, Vol. 2, pp. 1308-1329.

    Google Scholar 

  29. Weir, B. Epidemiology. In Aneurysms Affecting the Nervous System, edited by B. Weir. Baltimore: Williams &; Wilkins, 1987, pp. 1-60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieber, B.B., Livescu, V., Hopkins, L.N. et al. Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow. Annals of Biomedical Engineering 30, 768–777 (2002). https://doi.org/10.1114/1.1495867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1495867

Navigation