Skip to main content
Log in

The Clinical and Cost Considerations of Bisphosphonates in Preventing Bone Complications in Patients with Metastatic Breast Cancer or Multiple Myeloma

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption and are now the treatment of choice for the management of hypercalcaemia of malignancy. The incidences of hypercalcaemia and other skeletal complications (bone pain, pathological fracture) remain high despite apparent responses to systemic therapy, with particularly high event rates in women with advanced skeletal metastases of breast cancer. This review focuses on studies addressing the long-term efficacy of bisphosphonates to reduce skeletal complications in breast cancer (5 studies) and multiple myeloma (4 studies), with particular reference to controlled studies of sufficient magnitude and duration to allow confidence in the estimation of efficacy.

Bearing in mind the limitations of differences in trial design and the lack of direct studies comparing drugs, adequate exposure to a bisphosphonate reduces the incidence of skeletal complication by 30 to 40% in both breast cancer and multiple myeloma. Oral clondronate and intravenous pamidronate have similar efficacy in both diseases, but the duration of efficacy may differ between drugs. Both agents have shown intriguing survival benefits in subgroups of patients.

The numbers needed to treat (NNT) to prevent a skeletal complication during one year are lowest in metastatic skeletal disease in breast cancer (NNT < 8) but also compare very favourably with other disease for patients with recurrent non-skeletal breast cancer or multiple myeloma (NNTs 7 to 31 depending on the complication to be prevented). Treatment costs of both breast cancer and multiple myloma are driven by inpatient and outpatient hospital visits so that bisphosphonate regimens should be developed that reduce both.

Further research is required to determine if subgroups of patients can be better identified that will derive particular benefit, or perhaps no benefit at all, from bisphosphonate therapy. It is not known whether more potent bisphosphonates will deliver greater clinical efficacy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Taube T, Elomaa I, Blomqvist C, et al. Histomorphometric evidence for osteoclast mediated bone resorption in metastatic breast cancer. Bone 1994; 15: 161–6

    PubMed  CAS  Google Scholar 

  2. Croucher PI, Apperley JF. Bone disease in multiple myeloma. Br J Haematol 1998; 103: 902–10

    PubMed  CAS  Google Scholar 

  3. Fleisch H. Bisphosphonates: mechanisms of action. Endocr Rev 1998; 19: 80–100

    PubMed  CAS  Google Scholar 

  4. Fleisch H. From polyphosphates to bisphosphonates and their role in bone and calcium metabolism. Prog Mol Subcell Biol 1999; 23: 197–216

    PubMed  CAS  Google Scholar 

  5. Cancer statistics — registrations 1992. Office for National Statistics Series MB1 No. 25. London: The Stationery Office, 1998

    Google Scholar 

  6. McCloskey EV, MacLennan ICM, Drayson M, et al. A randomised trial of the effect of clodronate on skeletal morbidity in myelomatosis. Br J Haematol 1998; 100: 317–25

    PubMed  CAS  Google Scholar 

  7. Belch AR, Bergsagel DE, Wilson K, et al. Effect of daily etidronate on the osteolysis of multiple myeloma. J Clin Oncol 1991; 9: 1397–402

    PubMed  CAS  Google Scholar 

  8. Lahtinen R, Laakso M, Palval, et al., for the Finnish Leukaemia Group. Randomised placebo controlled multicentre trial of clodraonte in multiple myeloma. Lancet 1992; 340: 1049–52

    PubMed  CAS  Google Scholar 

  9. Brincker H, Westin J, Abildgaard N, et al., for the. Danish-Swedish Co-Operative Study Group. Failure of oral pamidronate to reduce skeletal morbidity in multiple myeloma: a double-blind placebo-controlled trial. Br J Haematol 1998; 101: 280–6

    PubMed  CAS  Google Scholar 

  10. Berenson JR, Lichtenstein A, Porter L, et al., for the Myeloma Aredia Study Group. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. J Clin Oncol 1998; 16: 593–602

    PubMed  CAS  Google Scholar 

  11. Berenson JR, Lichtenstein A, Porter L, et al., for the Myeloma Aredia Study Group. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med 1996; 334: 488–93

    PubMed  CAS  Google Scholar 

  12. Paterson A, Powles T, Kanis J, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 1993; 11: 59–65

    PubMed  CAS  Google Scholar 

  13. Kanis JA, Powles T, Paterson AHG, et al. Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 1996; 19: 663–7

    PubMed  CAS  Google Scholar 

  14. Hortobagyi GN, Theriault RL, Porter L, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 1996; 335: 1785–91

    PubMed  CAS  Google Scholar 

  15. Hortobagyi G, Theriault RL, Lipton A, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. J Clin Oncol 1998; 16: 2038–44

    PubMed  CAS  Google Scholar 

  16. Theriault RL, Lipton A, Hortobagyi GN, et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 1999; 17: 846–54

    PubMed  CAS  Google Scholar 

  17. Hultborn R, Gundesen S, Ryden S, et al. Efficacy of pamidronate in breast cancer with bone metastases: a randomized, double-blind placebo-controlled multicenter study. Anticancer Res 1999; 19: 3383–92

    PubMed  CAS  Google Scholar 

  18. Kimura S, Adehi I, Yamaguehi K, et al. Stimulation of calcium reabsorption observed in advanced breast cancer in patients with hypercalcemia and multiple bone metastases. Jpn J Cancer Res (Gann) 1985; 76: 308–14

    CAS  Google Scholar 

  19. Valentin-Opran A, Charhon SA, Meunier PJ, et al. Quantitative histology of myeloma-induced bone changes. Br J Haematol 1982; 52: 601–10

    PubMed  CAS  Google Scholar 

  20. Delmas PD, Charhon S, Chapuy MC, et al. Long-term effects of dichloromethylene diphosphonate (Cl2MDP) on skeletal lesions in multiple myeloma. Metab Bone Dis RelatRes 1982; 4: 163–8

    CAS  Google Scholar 

  21. Taube T, Beneton MNC, McCloskey EV, et al. Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematology 1993; 49: 192–8

    Google Scholar 

  22. Garrett IR, Durie BGM, Nedwin GE, et al. Production of lymphotoxin, a bone resorbing cytokine, by cultured human myeloma cells. N Engl J Med 1987; 317: 526–32

    PubMed  CAS  Google Scholar 

  23. Kawano M, Yamamoto I, Iwato K. Interleukin-1 beta rather than lymphotoxin as a major bone resorbing activity in human multiple myeloma. Blood 1989; 73: 1646–9

    PubMed  CAS  Google Scholar 

  24. Garrett IR, Black KS, Mundy GR. Interactions between interleukin-6 and interleukin-1 in osteoclastic bone resorption in neonatal mouse calvaria. Calcif Tissue Int 1990; 46 Suppl. 2: S140–S149

    Google Scholar 

  25. Klein B, Zhang XG, Jourdan M, et al. Interleukin-6 is the central tumor growth factor in vitro and in vivo in multiple myeloma. Eur Cytokine Netw 1990; 1: 193–201

    PubMed  CAS  Google Scholar 

  26. Russell RG. Cellular regulatory mechanisms that may underlie the effects of corticosteroids on bone. Br J Rheumatol 1993; 32 Suppl. 2:6–10

    PubMed  Google Scholar 

  27. Ishikawa H, Tanaka H, Iwato K, et al. Effect of glucocorticoids on the biologic activities of myeloma cells: inhibition of interleukin-1 beta osteoclast activating factor-induced bone resorption. Blood 1990; 75: 715–20

    PubMed  CAS  Google Scholar 

  28. Strumpf M, Kowalski MA, Mundy GR. Effects of glucocorticoids on osteoclast-activating factor. J Lab Clin Med 1978; 92: 772–8

    PubMed  CAS  Google Scholar 

  29. Evans CE, Galasko CSB, Ward C. Does myeloma secrete an osteoblast inhibiting factor? J Bone Joint Surg Br 1989; 71B: 288–90

    Google Scholar 

  30. Evans CE, Ward C, Rathour L, et al. Myeloma affects both the growth and function of human osteoblast-like cells. Clin Exp Metastasis 1992; 10: 33–8

    PubMed  CAS  Google Scholar 

  31. Lacroix M, Siwek B, Body JJ. Effects of secretory products of breast cancer cells on osteoblast-like cells. Breast Cancer Res Treat 1996; 38; 209–16

    PubMed  CAS  Google Scholar 

  32. Siwek B, Lacroix M, dePollak C, et al. Secretory products of breast cancer cells affect human osteoblastic cells: partial characterisation of active factors. J Bone Miner Res 1997; 12: 552–60

    PubMed  CAS  Google Scholar 

  33. Kanis JA, McCloskey EV, Powles T, et al. A high incidence of vertebral fracture in women with breast cancer. Br J Cancer 1999; 79: 1179–81

    PubMed  CAS  Google Scholar 

  34. Utz JP, Melton LJ, Kan SH, et al. Risk of osteoporotic fractures in women with breast cancer: a population band cohort study. J Chronic Dis 1987; 40: 105–13

    PubMed  CAS  Google Scholar 

  35. Bruning P, Pit M, de Jong-Bakker M, et al. Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer 1990; 61: 308–10

    PubMed  CAS  Google Scholar 

  36. Delmas P, Balena R, Confravreux E, et al. Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind, placebo-controlled study. J Clin Oncol 1997; 15: 955–62

    PubMed  CAS  Google Scholar 

  37. Powles TJ, Hickish T, Kanis JA, et al. Effect of tamoxifen on bone mineral density measured by dual energy X-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 1996; 14: 78–84

    PubMed  CAS  Google Scholar 

  38. Powles TJ, McCloskey EV, Paterson AHG, et al. Oral clodronate and reduction in loss of bone mineral density in women with operable primary breast cancer. J Natl Cancer Inst 1998; 90(9): 704–8

    PubMed  CAS  Google Scholar 

  39. Saarto T, Blomqvist C, Valimaki M, et al. Chemical castration induced by adjuvant cyclophosphamide, methotrexate and fluorouracil chemotherapy causes rapid bone loss that is reduced by clodronate: a randomized study in premenopausal breast cancer patients. J Clin Oncol 1997; 15: 1341–7

    PubMed  CAS  Google Scholar 

  40. Pouilles J, Tremollieres F, Bonneu M, et al. Influence of early age at menopause on vertebral bone mass. J Bone Miner Res 1994; 9: 311–5

    PubMed  CAS  Google Scholar 

  41. Love R, Mazess R, Barden H, et al. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 1992; 326: 852–6

    PubMed  CAS  Google Scholar 

  42. Saarto T, Blomqvist C, Valimaki M, et al. Clodronate improves bone mineral density in post-menopausal breast cancer patients treated with adjuvant antiestrogens. Br J Cancer 1997; 75: 602–5

    PubMed  CAS  Google Scholar 

  43. Kristensen B, Ejlertsen B, Mouridsen HT, et al. Femoral fractures in postmenopausal breast cancer patients treated with adjuvant tamoxifen. Breast Cancer Res Treat 1996; 39: 321–6

    PubMed  CAS  Google Scholar 

  44. Mariette X, Bergot C, Ravaud P, et al. Evolution of bone densitometry in patients with myeloma treated with conventional or intensive therapy. Cancer 1995; 76: 1559–63

    PubMed  CAS  Google Scholar 

  45. Kanis JA, McCloskey EV. Bisphosphonates in multiple myeloma. Cancer 2000; 88(S12): 3022–32

    PubMed  CAS  Google Scholar 

  46. Cummings SR, Melton III LJ, Felsenberg D, et al. Assessing vertebral fractures. J Bone Miner Res 1995; 10: 518–23

    Google Scholar 

  47. McCloskey EV, Spector TD, Eyres KS, et al. The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporo Int 1993; 3: 138–47

    CAS  Google Scholar 

  48. McCloskey EV, Spector T, Khan S, et al. Prevalence of vertebral deformity and concordance between definitions of fracture. In: Christiansen C, Riis B, editors. Osteoporosis proceedings 1993. Copenhagen: Osteopress APS, 1993: 62–4

    Google Scholar 

  49. McCloskey EV, Kanis JA. The assessment of vertebral deformity. In: Genant HK, Jergas M, van Kujik C, editors. Vertebral fractures in osteoporosis. San Francisco: UCSF, 1996

    Google Scholar 

  50. Bruce NJ, McCloskey EV, Kanis JA, et al. Economic impact of using clodronate in the management of patients with multiple myeloma. Br JHaematol 1999; 104: 358–64

    CAS  Google Scholar 

  51. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996; 348: 1535–41

    PubMed  CAS  Google Scholar 

  52. Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 1999; 282: 1344–52

    PubMed  CAS  Google Scholar 

  53. Major PP, Lipton A, Berenson J, et al. Oral bisphosphonates: a review of clinical use in patients with bone metastases. Cancer 2000; 88: 6–14

    PubMed  CAS  Google Scholar 

  54. Vinholes JJ, Purohit OP, Abbey ME, et al. Relationships between biochemical and symptomatic response in a double-blind randomised trial of pamidronate for metastatic bone disease. Ann Oncol 1997; 8: 1243–50

    PubMed  CAS  Google Scholar 

  55. Adami S, Salvagno G, Guarrera G, et al. Dichloromethylene diphosphonate in patients with prostatic carcinoma metastatic to the skeleton. J Urol 1985; 134: 1152–4

    PubMed  CAS  Google Scholar 

  56. Adami S, Mian M. Clodronate therapy of metastatic bone disease in patients with prostatic carcinoma. Recent Results Cancer Res 1989; 116: 67–72

    PubMed  CAS  Google Scholar 

  57. Ernst DS, Brasher P, Hagen N, et al. A randomised, controlled trial of intravenous clodronate in patients with metastatic bone disease and pain. J Pain Symptom Manag 1997; 13: 319–26

    CAS  Google Scholar 

  58. Ernst DS, MacDonald RN, Paterson AHG, et al. A double blind cross-over trial of intravenous clondronate in metastatic bone pain. J Pain Sympt Manag 1992; 7:4–11

    CAS  Google Scholar 

  59. Heim ME, Clemens MR, Queisser W, et al. Prospective randomized trial of dichloromethylene bisphosphonate (clodronate) in patients with multiple myeloma requiring treatment: a multicentre study. Oncology 1995; 18: 439–48

    Google Scholar 

  60. Ascari E, Attardo Parrinello G, Merlini G. Treatment of painful bone lesions and hypercalcaemia. Eug J Haemol 1989; 51 Suppl. 43: 135–9

    CAS  Google Scholar 

  61. Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 2000; 88: 1082–90

    PubMed  CAS  Google Scholar 

  62. Sasaki A, Boyce BF, Story B, et al. Bisphosphonate residronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 1995; 55: 3551–7

    PubMed  CAS  Google Scholar 

  63. Yoneda T, Sasaki A, Dunstan C, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the Matrix-Metalloproteinase-2. J Clin Invest 1997; 99: 2509–17

    PubMed  CAS  Google Scholar 

  64. Elomaa I, Blomqvist C, Grohn P, et al. Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet 1983; I: 146–9

    Google Scholar 

  65. Elomaa I, Blomqvist C, Porkka L, et al. Treatment of skeletal disease in breast cancer: a controlled clodronate trial. Bone 1987; 8 Suppl. 1:53–6

    Google Scholar 

  66. Powles TJ, Paterson AHG, Nevantaus A, et al. Adjuvant clodronate reduces the incidence of bone metastases in patients with primary operable breast cancer [abstract]. Prog Proc Am Soc Clin Oncol 1998; 17: 123a

    Google Scholar 

  67. Diel IJ, Solomayer EF, Costa SD, et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 1998; 339: 357–63

    PubMed  CAS  Google Scholar 

  68. Riccardi A, Ucci G, Brugnatelli S, et al. Prospective, controlled, non randomised study on prophylactic parenteral dichlore-methylene bisphosphonate (clodronate) in multiple myeloma. Int J Oncol 1994; 5: 833–9

    PubMed  CAS  Google Scholar 

  69. Biermann WA, Cantor RI, Fellin FM, et al. An evaluation of the potential cost reductions resulting from the use of clodronate in the treatment of metastatic carcinoma of the breast to bone. Bone 1991; 12 Suppl. 1: S37–S42

    PubMed  Google Scholar 

  70. Laakso M, Lahtinen R, Virkkunen P, et al. Subgroup and cost-benefit analysis of the Finnish multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Br J Haematol 1994; 87: 725–9

    PubMed  CAS  Google Scholar 

  71. Hillner BE, Weeks JC, Desch CE, et al. Pamidronate in prevention of bone complications in metastatic breast cancer: a cost-effectiveness analysis. J Clin Oncol 2000; 18: 72–9

    PubMed  CAS  Google Scholar 

  72. Gent M, Blakely JA, Easton JD, et al. The Canadian American ticlopidine study (CATS) in thromboembolic stroke. Lancet 1989; I: 1215–20

    Google Scholar 

  73. Diener HC, Cunha L, Forbes C, et al. European Stroke Prevention Study 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci 1996; 143: 1–13

    PubMed  CAS  Google Scholar 

  74. The BASO Guidelines for the Management of Metastatic Bone Disease in Breast Cancer Working Party (1999). British Association of Surgical Oncology Guidelines for the Management of Metastatic Bone Disease in the United Kingdom. Eur J Surg Oncol 1999; 25: 3–23

    Google Scholar 

  75. Adamson BB, Gallacher SJ, Byars J, et al. Mineralisation defects with pamidronate therapy for Paget’s disease. Lancet 1993; 342: 1459–60

    PubMed  CAS  Google Scholar 

  76. Elomaa I, Risteli L, Laakso M, et al. Monitoring the action of clodronate with type I collagen metabolites in multiple myeloma. Eur J Cancer 1996; 32A(7): 1166–70

    PubMed  CAS  Google Scholar 

  77. Vinholes J, Coleman R, Lacombe D, et al. Assessment of bone response to systemic therapy in an EORTC trial: preliminary experience with the use of collagen cross-link excretion. Br J Cancer 1999; 80: 221–8

    PubMed  CAS  Google Scholar 

  78. Elomaa I, Blomqvist C, Porkka L, et al. Diphosphonates for osteolytic metastases. Lancet 1985; I: 1155–6

    Google Scholar 

  79. Kanis JA, McCloskey EV, Taube T, et al. Rationale for the use of bisphosphonates in bone metastases. Bone 1991; 12 Suppl. 1: S13–S18

    PubMed  Google Scholar 

  80. Minaire P, Depassio J, Berard E, et al. Effects of clodronate on immobilization bone loss. Bone 1987; 8 Suppl. 1; 63–8

    Google Scholar 

  81. Taube T, Elomaa I, Blomqvist C, et al. Comparative effects of clodronate and calcitonin on bone in metastatic breast cancer: a histomorphometric study. Eur J Cancer 1993; 29A: 1677–81

    PubMed  CAS  Google Scholar 

  82. Douglas DL, Russell RGG, Preston CJ, et al. Effect of dichloromethylene diphosphonate in Paget’s disease of bone and in hyperparathyroidism or malignant disease. Lancet 1980; 1: 1043–7

    PubMed  CAS  Google Scholar 

  83. Ralston SH, Gardner MD, Dryburgh FJ, et al. Comparison of aminohydroxyprophylidene diphosphonate, mithramycin and corticosteroids/calcitonin in treatment of cancer-associated hypercalcaemia. Lancet 1985; II: 907–10

    Google Scholar 

  84. Bounameaux HM, Schifferli J, Montani J-P, et al. Renal failure associated with intravenous diphosphonates [letter]. Lancet 1983; I: 471

    Google Scholar 

  85. Laitinen K, Taube T. Clodronate as a cause of aminotransferase elevation. Osteoporos Int 1999; 10: 120–2

    PubMed  CAS  Google Scholar 

  86. vanHolten-Verzantvoort AT, Bijvoet OLM, Hermans J, et al. Reduced morbidity from skeletal metastases in breast cancer patients during long-term bisphosphonate (APD) treatment. Lancet 1987; II: 983–5

    Google Scholar 

  87. De Groen P, Lubbe DF, Hirsch LJ, et al. Esophagitis associated with the use of alendronate. N Engl J Med 1996;335: 1016–21

    PubMed  Google Scholar 

  88. Purohit OP, Radstone CR, Anthony C, et al. A randomised double-blind comparison of intravenous pamidronate and clodronate in the hypercalcaemia of malignancy. Br J Cancer 1995; 72: 1289–93

    PubMed  CAS  Google Scholar 

  89. Wimalawansa SJ. Optimal frequency of administration of pamidronate in patients with hypercalcaemia of malignancy. Clin Endocrinol (Oxf) 1994; 41: 591–5

    CAS  Google Scholar 

  90. Adami S, Zamberlan N. Adverse effects of bisphosphonates: a comparative review. Drug Saf 1996; 14: 158–70

    PubMed  CAS  Google Scholar 

  91. Thiebaud D, Jaeger P, Gobelet C, et al. A single infusion of the bisphosphonate AHPrBP (APD) as treatment of Paget’s disease of bone. Am J Med 1988; 85: 207–12

    PubMed  CAS  Google Scholar 

  92. Abildgaard N, Rungby J, Glerup H, et al. Long-term oral pamidronate treatment inhibits osteoclastic bone resorption and bone turnover without affecting osteoblastic function in multiple myeloma. Eur JHaematol 1998; 61: 128–34

    CAS  Google Scholar 

  93. Adami S, Bhalla AK, Dorizzi R, et al. The acute-phase response after bisphosphonate administration. Calcif Tissue Int 1987; 41: 326–31

    PubMed  CAS  Google Scholar 

  94. Bijvoet OL, Frijlink WB, Jie K, et al. APD in Paget’s disease of bone: role of the mononuclear phagocyte system? Arthritis Rheum 1980; 23: 1193–204

    PubMed  CAS  Google Scholar 

  95. Mautalen CA, Casco CA, Gonzalez D, et al. Side-effects of disodium aminohydroxypropylidene diphosphonate (APD) during treatment of bone diseases. Br Med J (Clin Res Ed) 1984; 288: 828–9

    CAS  Google Scholar 

  96. Pecherstorfer M, Jilch R, Sauty A, et al. Effect of first treatment with aminobisphosphonates pamidronate and ibandronate on circulating lymphocyte subpopulations. J Bone Miner Res 2000;15:147–54

    PubMed  CAS  Google Scholar 

  97. O’Rourke NP, McCloskey EV, Houghton F, et al. Double blind, placebo controlled, dose response trial of oral clodronate in patients with bone metastases. J Clin Oncol 1995; 13: 929–34

    PubMed  Google Scholar 

  98. Khan S, McCloskey EV, Houghton F, et al. Double blind placebo-controlled dose response trial of oral clodronate in patients with bone metastases. J Clin Oncol 1995; 13: 929–34

    Google Scholar 

  99. Kanis JA. Pathophysiology and treatment of Paget’s disease of bone. London: Martin Dunitz, 1991

    Google Scholar 

  100. McCloskey EV, Selby P, de Takats D, et al. Effects of clodronate on vertebral fracture risk in established osteoporosis — a one year interim analysis. Bone 2001; 28: 310–5

    PubMed  CAS  Google Scholar 

  101. Yakatan GL, Poynor WJ, Talbert RL, et al. Clodronate kinetics and bioavailability. Clin Pharmacol Ther 1982; 31; 402–10

    PubMed  CAS  Google Scholar 

  102. Pentikainen PJ, Elomaa I, Nurmi AK, et al. Pharmocokinetics of clodronate in patients with metastatic breast cancer. Int J Pharmacol Ther Toxicol 1989; 27: 222–8

    CAS  Google Scholar 

  103. Jeal W, Barradell LB, McTavish D. Alendronate: a review of its pharmacological properties and therapeutic efficacy in postmenopausal osteoporosis. Drugs 1997; 53: 415–34

    PubMed  CAS  Google Scholar 

  104. Laitinen K, Patronen A, Harju P, et al. Timing of food intake has a marked effect on the bioavailability of clodronate. Bone 2000; 27: 293–6

    PubMed  CAS  Google Scholar 

  105. Castren-Kortekangas P, Loyttyniemi E, Liukko-Sipi S, et al. Pooling of clodronate urinary excretion data: a new pharma-cokinetic method to study drugs with highly variable gastrointestinal absorption. J Bone Miner Res 1997; 12: 66–71

    PubMed  CAS  Google Scholar 

  106. Saarto T, Blomqvist C, Virkkunen P, et al. Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 2001; 19: 10–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene V. McCloskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCloskey, E.V., Guest, J.F. & Kanis, J.A. The Clinical and Cost Considerations of Bisphosphonates in Preventing Bone Complications in Patients with Metastatic Breast Cancer or Multiple Myeloma. Drugs 61, 1253–1274 (2001). https://doi.org/10.2165/00003495-200161090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200161090-00003

Keywords

Navigation