Characterizing heterogeneous properties of cerebral aneurysms with unknown stress-free geometry: a precursor to in vivo identification

J Biomech Eng. 2011 May;133(5):051008. doi: 10.1115/1.4003872.

Abstract

Knowledge of elastic properties of cerebral aneurysms is crucial for understanding the biomechanical behavior of the lesion. However, characterizing tissue properties using in vivo motion data presents a tremendous challenge. Aside from the limitation of data accuracy, a pressing issue is that the in vivo motion does not expose the stress-free geometry. This is compounded by the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This article introduces a method for identifying the heterogeneous properties of aneurysm wall tissue under unknown stress-free configuration. In the proposed approach, an accessible configuration is taken as the reference; the unknown stress-free configuration is represented locally by a metric tensor describing the prestrain from the stress-free configuration to the reference configuration. Material parameters are identified together with the metric tensor pointwisely. The paradigm is tested numerically using a forward-inverse analysis loop. An image-derived sac is considered. The aneurysm tissue is modeled as an eightply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four material parameters. The parameters are assumed to vary continuously in two assigned patterns to represent two types of material heterogeneity. Nine configurations between the diastolic and systolic pressures are generated by forward quasi-static finite element analyses. These configurations are fed to the inverse analysis to delineate the material parameters and the metric tensor. The recovered and the assigned distributions are in good agreement. A forward verification is conducted by comparing the displacement solutions obtained from the recovered and the assigned material parameters at a different pressure. The nodal displacements are found in excellent agreement.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anisotropy
  • Biomechanical Phenomena
  • Blood Pressure
  • Computer Simulation*
  • Elasticity
  • Finite Element Analysis*
  • Humans
  • Intracranial Aneurysm / pathology*
  • Intracranial Aneurysm / physiopathology*
  • Models, Cardiovascular*
  • Nonlinear Dynamics
  • Shear Strength
  • Stress, Mechanical